This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317350 #11 Aug 10 2018 12:06:39 %S A317350 1,1,2,12,200,4160,99862,2767792,87200166,3076185774,120118928740, %T A317350 5144915483804,239932734849080,12106729328331780,657428964058944716, %U A317350 38239094075667233528,2372421500769940561658,156417910715313378830238,10923007991339600108590688,805475337677577620666606928,62550798567594006106067173708 %N A317350 G.f. satisfies: A(x) = Sum_{n>=0} ( (1+x)^n - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1). %C A317350 G.f. A(x) = G(log(1+x)), where G(x) is the e.g.f. of A317355. %H A317350 Paul D. Hanna, <a href="/A317350/b317350.txt">Table of n, a(n) for n = 0..200</a> %F A317350 G.f. A(x) satisfies: %F A317350 (1) A(x) = Sum_{n>=0} ( (1+x)^n - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1), %F A317350 (2) A(x) = Sum_{n>=0} ( (1+x)^n + A(x) )^n / (2 + (1+x)^n*A(x))^(n+1). %F A317350 a(n) ~ c * d^n * n! / sqrt(n), where d = A317904 = 3.956184203026... and c = 0.14581304299... - _Vaclav Kotesovec_, Aug 07 2018 %e A317350 G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 200*x^4 + 4160*x^5 + 99862*x^6 + 2767792*x^7 + 87200166*x^8 + 3076185774*x^9 + 120118928740*x^10 + ... %e A317350 such that A = A(x) satisfies %e A317350 A(x) = 1/(2 - A) + ((1+x) - A)/(2 - (1+x)*A)^2 + ((1+x)^2 - A)^2/(2 - (1+x)^2*A)^3 + ((1+x)^3 - A)^3/(2 - (1+x)^3*A)^4 + ((1+x)^4 - A)^4/(2 - (1+x)^4*A)^5 + ((1+x)^5 - A)^5/(2 - (1+x)^5*A)^6 + ... %e A317350 Also, %e A317350 A(x) = 1/(2 + A) + ((1+x) + A)/(2 + (1+x)*A)^2 + ((1+x)^2 + A)^2/(2 + (1+x)^2*A)^3 + ((1+x)^3 + A)^3/(2 + (1+x)^3*A)^4 + ((1+x)^4 + A)^4/(2 + (1+x)^4*A)^5 + ((1+x)^5 + A)^5/(2 + (1+x)^5*A)^6 + ... %o A317350 (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A = Vec( sum(m=0,#A, ( (1+x)^m - Ser(A) )^m / (2 - (1+x)^m*Ser(A))^(m+1) ) ) ); A[n+1]} %o A317350 for(n=0,30,print1(a(n),", ")) %Y A317350 Cf. A317351, A317355. %K A317350 nonn %O A317350 0,3 %A A317350 _Paul D. Hanna_, Aug 02 2018