This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317351 #12 Aug 10 2018 12:06:34 %S A317351 1,2,6,16,154,4584,130464,3816304,123180090,4422532004,175136909492, %T A317351 7585703878304,356923128965592,18139717839708536,990827454743868120, %U A317351 57910782633622271952,3607453763547725076028,238660376246383050751764,16714929289459273370819900,1235688614706272361317140840,96170725583233854961162923028 %N A317351 G.f. satisfies: A(x) = Sum_{n>=0} ( (1+x)^(n+1) - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1). %C A317351 G.f. A(x) = G(log(1+x)), where G(x) is the e.g.f. of A317356. %H A317351 Paul D. Hanna, <a href="/A317351/b317351.txt">Table of n, a(n) for n = 0..200</a> %F A317351 G.f. A(x) satisfies: %F A317351 (1) A(x) = Sum_{n>=0} ( (1+x)^(n+1) - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1), %F A317351 (2) A(x) = Sum_{n>=0} ( (1+x)^(n+1) + A(x) )^n / (2 + (1+x)^n*A(x))^(n+1). %F A317351 a(n) ~ c * d^n * n! / sqrt(n), where d = A317904 = 3.956184203026... and c = 0.23137523927... - _Vaclav Kotesovec_, Aug 07 2018 %e A317351 G.f.: A(x) = 1 + 2*x + 6*x^2 + 16*x^3 + 154*x^4 + 4584*x^5 + 130464*x^6 + 3816304*x^7 + 123180090*x^8 + 4422532004*x^9 + 175136909492*x^10 + ... %e A317351 such that A = A(x) satisfies %e A317351 A(x) = 1/(2 - A) + ((1+x)^2 - A)/(2 - (1+x)*A)^2 + ((1+x)^3 - A)^2/(2 - (1+x)^2*A)^3 + ((1+x)^4 - A)^3/(2 - (1+x)^3*A)^4 + ((1+x)^5 - A)^4/(2 - (1+x)^4*A)^5 + ((1+x)^6 - A)^5/(2 - (1+x)^5*A)^6 + ... %e A317351 Also, %e A317351 A(x) = 1/(2 + A) + ((1+x)^2 + A)/(2 + (1+x)*A)^2 + ((1+x)^3 + A)^2/(2 + (1+x)^2*A)^3 + ((1+x)^4 + A)^3/(2 + (1+x)^3*A)^4 + ((1+x)^5 + A)^4/(2 + (1+x)^4*A)^5 + ((1+x)^6 + A)^5/(2 + (1+x)^5*A)^6 + ... %o A317351 (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A = Vec( sum(m=0,#A, ( (1+x)^(m+1) - Ser(A) )^m / (2 - (1+x)^m*Ser(A))^(m+1) ) ) ); A[n+1]} %o A317351 for(n=0,30,print1(a(n),", ")) %Y A317351 Cf. A317350, A317356. %K A317351 nonn %O A317351 0,2 %A A317351 _Paul D. Hanna_, Aug 02 2018