This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317360 #33 Aug 28 2018 03:30:46 %S A317360 1,1,2,1,7,-4,1,24,-23,-8,1,76,-164,-79,16,1,235,-960,-1045,255,32,1, %T A317360 716,-5485,-11155,5940,831,-64,1,2166,-29816,-116480,109960,32778, %U A317360 -2687,-128,1,6527,-158252,-1143336,2024920,1029844,-176257,-8703,256,1,19628,-822291,-10851888,34850816,32711632,-9230829,-937812,28159,512 %N A317360 Triangle a(n, k) read by rows: coefficient triangle that gives Lucas powers and sums of Lucas powers. %F A317360 a(n, k) = Sum_{j=0..k} Lucas(k+1-j)^n * A055870(n+1, j). %F A317360 Sum_{j=0..n} a(n, n-j) * A010048(k-1+j, n) = Lucas(k)^n. %F A317360 Sum_{j=0..n} a(n, n-j) * A305695(k-2+j, n-1) = Sum_{t=1..k} Lucas(t)^n. %e A317360 n\k| 0 1 2 3 4 5 6 7 8 9 %e A317360 ---+------------------------------------------------------------------------- %e A317360 0 | 1 %e A317360 1 | 1 2 %e A317360 2 | 1 7 -4 %e A317360 3 | 1 24 -23 -8 %e A317360 4 | 1 76 -164 -79 16 %e A317360 5 | 1 235 -960 -1045 255 32 %e A317360 6 | 1 716 -5485 -11155 5940 831 -64 %e A317360 7 | 1 2166 -29816 -116480 109960 32778 -2687 -128 %e A317360 8 | 1 6527 -158252 -1143336 2024920 1029844 -176257 -8703 256 %e A317360 9 | 1 19628 -822291 -10851888 4850816 32711632 -9230829 -937812 28159 512 %o A317360 (PARI) lucas(p)=2*fibonacci(p+1)-fibonacci(p); %o A317360 S(n, k) = (-1)^floor((k+1)/2)*(prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j))); %o A317360 T(n, k) = sum(j=0, k, lucas(k+1-j)^n * S(n+1, j)); %o A317360 tabl(m) = for (n=0, m, for (k=0, n, print1(T(n, k), ", ")); print); %o A317360 tabl(9); %Y A317360 Cf. A000032, A000045, A055870, A010048, A027961, A005970, A305695. %K A317360 sign,tabl %O A317360 0,3 %A A317360 _Tony Foster III_, Jul 26 2018