cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317387 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the least positive multiple of n that contains k as a substring in its decimal representation.

This page as a plain text file.
%I A317387 #5 Jul 28 2018 11:13:58
%S A317387 1,10,2,12,2,3,12,12,30,4,10,12,3,4,5,12,20,32,24,50,6,14,12,30,4,15,
%T A317387 6,7,16,21,30,40,52,6,70,8,18,24,35,24,5,16,27,8,9,10,27,32,14,54,60,
%U A317387 72,18,90,10,11,20,36,24,35,6,70,8,9,10,11,12,22,30,45
%N A317387 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the least positive multiple of n that contains k as a substring in its decimal representation.
%F A317387 T(n, k) = n * A317175(n, k).
%F A317387 T(1, k) = k.
%F A317387 T(n, n) = n.
%F A317387 T(n, 1) = A317180(n).
%e A317387 Array T(n, k) begins:
%e A317387   n\k|    1    2    3    4    5    6    7    8    9   10   11   12
%e A317387   ---+------------------------------------------------------------
%e A317387     1|    1    2    3    4    5    6    7    8    9   10   11   12
%e A317387     2|   10    2   30    4   50    6   70    8   90   10  110   12
%e A317387     3|   12   12    3   24   15    6   27   18    9  102  111   12
%e A317387     4|   12   12   32    4   52   16   72    8   92  100  112   12
%e A317387     5|   10   20   30   40    5   60   70   80   90   10  110  120
%e A317387     6|   12   12   30   24   54    6   72   18   90  102  114   12
%e A317387     7|   14   21   35   14   35   56    7   28   49  105  112  112
%e A317387     8|   16   24   32   24   56   16   72    8   96  104  112  112
%e A317387     9|   18   27   36   45   45   36   27   18    9  108  117  126
%e A317387    10|   10   20   30   40   50   60   70   80   90   10  110  120
%o A317387 (PARI) T(n, k, base=10) = { my (w=base^#digits(k, base)); for (m=1, oo, my (mn=m*n); while (mn >= k, if (mn % w == k, return (m*n), mn \= base))) }
%Y A317387 Cf. A317175, A317180.
%K A317387 nonn,tabl,base
%O A317387 1,2
%A A317387 _Rémy Sigrist_, Jul 27 2018