This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317390 #22 Dec 06 2019 08:53:27 %S A317390 2,1,5,25,3,7,43,29,4,11,211,61,37,6,15,638,261,91,40,8,23,664,848, %T A317390 421,111,41,9,26,1613,1956,921,426,121,49,10,27,2991,3321,2058,969, %U A317390 441,124,51,12,28,7021,3004,3336,2092,1002,484,171,52,13,31,11306,7162,3319,3368,2094,1026,535,184,67,14,33 %N A317390 A(n,k) is the n-th positive integer that has exactly k representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes; square array A(n,k), n>=1, k>=0, read by antidiagonals. %H A317390 Alois P. Heinz, <a href="/A317390/b317390.txt">Antidiagonals n = 1..34, flattened</a> %H A317390 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A317390 A317241(A(n,k)) = k. %e A317390 A(6,2) = 49: 1 + 3 * (1 + 5 * (1 + 2)) = 1 + 2 * (1 + 23) = 49. %e A317390 Square array A(n,k) begins: %e A317390 2, 1, 25, 43, 211, 638, 664, 1613, 2991, ... %e A317390 5, 3, 29, 61, 261, 848, 1956, 3321, 3004, ... %e A317390 7, 4, 37, 91, 421, 921, 2058, 3336, 3319, ... %e A317390 11, 6, 40, 111, 426, 969, 2092, 3368, 3554, ... %e A317390 15, 8, 41, 121, 441, 1002, 2094, 3741, 3928, ... %e A317390 23, 9, 49, 124, 484, 1026, 2283, 3914, 4846, ... %e A317390 26, 10, 51, 171, 535, 1106, 2381, 3979, 5552, ... %e A317390 27, 12, 52, 184, 540, 1156, 2388, 4082, 5886, ... %e A317390 28, 13, 67, 187, 591, 1191, 2432, 4126, 6293, ... %p A317390 b:= proc(n, s) option remember; `if`(n=1, 1, add(b((n-1)/p, %p A317390 s union {p}) , p=numtheory[factorset](n-1) minus s)) %p A317390 end: %p A317390 A:= proc() local h, p, q; p, q:= proc() [] end, 0; %p A317390 proc(n, k) %p A317390 while nops(p(k))<n do q:= q+1; %p A317390 h:= b(q, {}); %p A317390 p(h):= [p(h)[], q] %p A317390 od; p(k)[n] %p A317390 end %p A317390 end(): %p A317390 seq(seq(A(n, d-n), n=1..d), d=1..10); %t A317390 b[n_, s_List] := b[n, s] = If[n == 1, 1, Sum[If[p == 1, 0, b[(n - 1)/p, s ~Union~ {p}]], {p, FactorInteger[n - 1][[All, 1]] ~Complement~ s}]]; %t A317390 A[n_, k_] := Module[{h, p, q = 0}, p[_] = {}; While[Length[p[k]] < n, q = q + 1; h = b[q, {}]; p[h] = Append[p[h], q]]; p[k][[n]]]; %t A317390 Table[Table[A[n, d - n], {n, 1, d}], {d, 1, 11}] // Flatten (* _Jean-François Alcover_, Dec 06 2019, from Maple *) %Y A317390 Columns k=0-10 give: A317242, A317391, A317392, A317393, A317394, A317395, A317396, A317397, A317398, A317399, A317400. %Y A317390 Row n=1 gives A317385. %Y A317390 A(n,n) gives A317537. %Y A317390 Cf. A317241. %K A317390 nonn,tabl %O A317390 1,1 %A A317390 _Alois P. Heinz_, Jul 27 2018