This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317393 #4 Jul 27 2018 10:36:29 %S A317393 43,61,91,111,121,124,171,184,187,205,221,231,256,265,267,268,274,277, %T A317393 281,283,291,311,323,326,331,337,371,373,375,379,386,411,412,427,428, %U A317393 435,443,451,456,457,471,474,475,482,491,494,505,507,508,511,519,521,523 %N A317393 Positive integers that have exactly three representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes. %H A317393 Alois P. Heinz, <a href="/A317393/b317393.txt">Table of n, a(n) for n = 1..20000</a> %F A317393 A317241(a(n)) = 3. %p A317393 b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0; %p A317393 for p in numtheory[factorset](n-1) minus s while r<4 %p A317393 do r:= r+b((n-1)/p, s union {p}) od; `if`(r<4, r, 4) %p A317393 fi %p A317393 end: %p A317393 a:= proc(n) option remember; local k; for k from %p A317393 `if`(n=1, 1, 1+a(n-1)) while b(k, {})<>3 do od; k %p A317393 end: %p A317393 seq(a(n), n=1..100); %Y A317393 Column k=3 of A317390. %Y A317393 Cf. A317241. %K A317393 nonn %O A317393 1,1 %A A317393 _Alois P. Heinz_, Jul 27 2018