This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317403 #81 Feb 16 2025 08:33:56 %S A317403 1,1,-4,-32,400,6912,-153664,-4194304,136048896,5120000000, %T A317403 -219503494144,-10567230160896,564668382613504,33174037869887488, %U A317403 -2125764000000000000,-147573952589676412928,11034809241396899282944,884295678882933431599104,-75613185918270483380568064 %N A317403 a(n)=(-1)^((n-2)*(n-1)/2)*2^(n-1)*n^(n-3). %C A317403 Discriminant of Fibonacci polynomials. %C A317403 Fibonacci polynomials are defined as F(0)=0, F(1)=1 and F(n)=x*F(n-1)+F(n-2) for n>1. Coefficients are given in triangle A168561 with offset 1. %H A317403 Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, <a href="https://arxiv.org/abs/1808.01264">The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials</a>, arXiv:1808.01264 [math.NT], 2018. %H A317403 Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Florez2/florez8.html">Star of David and other patterns in the Hosoya-like polynomials triangles</a>, 2018. %H A317403 R. Flórez, R. Higuita and A. Mukherjees, <a href="http://math.colgate.edu/~integers/s14/s14.Abstract.html">Characterization of the strong divisibility property for generalized Fibonacci polynomials</a>, Integers, 18 (2018), Paper No. A14. %H A317403 R. Flórez, N. McAnally, and A. Mukherjees, <a href="http://math.colgate.edu/~integers/s18b2/s18b2.Abstract.html">Identities for the generalized Fibonacci polynomial</a>, Integers, 18B (2018), Paper No. A2. %H A317403 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Discriminant.html">Discriminant</a> %H A317403 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciPolynomial.html">Fibonacci Polynomial</a> %t A317403 Array[(-1)^((#-2)*(#-1)/2)*2^(#-1)*#^(#-3)&,20] %o A317403 (PARI) concat([1], [poldisc(p) | p<-Vec(x/(1-x^2-y*x) - x + O(x^20))]) \\ _Andrew Howroyd_, Aug 26 2018 %o A317403 (Magma) [(-1)^((n-2)*(n-1) div 2)*2^(n-1)*n^(n-3): n in [1..20]]; // _Vincenzo Librandi_, Aug 27 2018 %Y A317403 Cf. A006645, A001629, A001871, A006645, A007701, A045618, A045925, A093967, A168561, A193678, A317404, A317405, A317408, A317451, A318184, A318197. %Y A317403 Essentially the same as A127670. %K A317403 sign %O A317403 1,3 %A A317403 _Rigoberto Florez_, Aug 26 2018