A317412 Practical numbers (A005153) that are not numbers whose divisors increase by a factor of 2 or less (A174973).
78, 348, 666, 820, 860, 1014, 1272, 1326, 1416, 1464, 1482, 1794, 1830, 2010, 2130, 2190, 2262, 2418, 2628, 2844, 2886, 2988, 3198, 3204, 3320, 3354, 3560, 3666, 3738, 4074, 4134, 4602, 4656, 4758, 4848, 4944, 5136, 5226, 5232, 5424, 5538, 5694, 5886, 6102, 6162, 6328
Offset: 1
Keywords
Examples
a(1)=78 because it is practical. It has divisors 1, 2, 3, 6, 13, 26, 39, 78, and 13/6 > 2. This is the first occurrence.
Links
- Wikipedia, Practical number.
- Wikipedia, "Complete" sequence. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - _N. J. A. Sloane_, May 20 2023]
Programs
-
Mathematica
PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod = prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Dens2DivQ[n_] := Module[{lst=Divisors[n]}, Do[ok=False; If[lst[[m+1]]/lst[[m]]>2, Break[]]; ok=True, {m, 1, Length[lst]-1}]; ok]; Select[Range[10000], PracticalQ[#]&&!Dens2DivQ[#] &]
Comments