cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317412 Practical numbers (A005153) that are not numbers whose divisors increase by a factor of 2 or less (A174973).

Original entry on oeis.org

78, 348, 666, 820, 860, 1014, 1272, 1326, 1416, 1464, 1482, 1794, 1830, 2010, 2130, 2190, 2262, 2418, 2628, 2844, 2886, 2988, 3198, 3204, 3320, 3354, 3560, 3666, 3738, 4074, 4134, 4602, 4656, 4758, 4848, 4944, 5136, 5226, 5232, 5424, 5538, 5694, 5886, 6102, 6162, 6328
Offset: 1

Views

Author

Frank M Jackson, Jul 27 2018

Keywords

Comments

Numbers that appear in A005153 but not in A174973.

Examples

			a(1)=78 because it is practical. It has divisors 1, 2, 3, 6, 13, 26, 39, 78, and 13/6 > 2. This is the first occurrence.
		

Crossrefs

Programs

  • Mathematica
    PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod = prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Dens2DivQ[n_] := Module[{lst=Divisors[n]}, Do[ok=False; If[lst[[m+1]]/lst[[m]]>2, Break[]]; ok=True, {m, 1, Length[lst]-1}]; ok]; Select[Range[10000], PracticalQ[#]&&!Dens2DivQ[#] &]