cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317449 Regular triangle where T(n,k) is the number of multiset partitions of strongly normal multisets of size n into k blocks, where a multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

This page as a plain text file.
%I A317449 #34 Dec 30 2020 14:57:14
%S A317449 1,2,2,3,6,3,5,21,16,5,7,52,72,32,7,11,141,306,216,65,11,15,327,1113,
%T A317449 1160,512,113,15,22,791,4033,6052,3737,1154,199,22,30,1780,13586,
%U A317449 28749,24325,10059,2317,323,30,42,4058,45514,133642,151994,82994,24854,4493,523,42
%N A317449 Regular triangle where T(n,k) is the number of multiset partitions of strongly normal multisets of size n into k blocks, where a multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.
%H A317449 Andrew Howroyd, <a href="/A317449/b317449.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50)
%e A317449 The T(3,2) = 6 multiset partitions are {{1},{1,1}}, {{1},{1,2}}, {{2},{1,1}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}.
%e A317449 Triangle begins:
%e A317449     1
%e A317449     2    2
%e A317449     3    6    3
%e A317449     5   21   16    5
%e A317449     7   52   72   32    7
%e A317449    11  141  306  216   65   11
%e A317449    15  327 1113 1160  512  113   15
%e A317449    ...
%t A317449 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A317449 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A317449 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t A317449 Table[Length[Select[Join@@mps/@strnorm[n],Length[#]==k&]],{n,6},{k,n}]
%o A317449 (PARI)
%o A317449 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
%o A317449 D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1, -n)/prod(i=1, #v, i^v[i]*v[i]!)}
%o A317449 U(m, n)={my(s=0); forpart(p=m, s+=D(p,n)); s}
%o A317449 M(n)={Mat(vector(n,k,(U(k,n)-U(k-1,n))~))}
%o A317449 { my(A=M(8)); for(n=1, #A~, print(A[n,1..n])) } \\ _Andrew Howroyd_, Dec 30 2020
%Y A317449 Row sums are A035310. First and last columns are both A000041.
%Y A317449 Cf. A001055, A007716, A045778, A255906, A281116, A317584, A317654, A317755, A317775, A317776.
%K A317449 nonn,tabl
%O A317449 1,2
%A A317449 _Gus Wiseman_, Aug 06 2018
%E A317449 Terms a(46) and beyond from _Andrew Howroyd_, Dec 30 2020