This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317450 #50 Feb 16 2025 08:33:56 %S A317450 1,1,-16,-2048,1638400,7247757312,-164995463643136, %T A317450 -18446744073709551616,9803356117276277820358656, %U A317450 24178516392292583494123520000000,-271732164163901599116133024293512544256,-13717048991958695477963985711266803110069141504,3074347100178259797134292590832254504315406543889629184 %N A317450 a(n)=(-1)^((n-2)*(n-1)/2)*2^((n-1)^2)*n^(n-3). %C A317450 Discriminant of Pell polynomials. %C A317450 Pell polynomials are defined as P(0)=0, P(1)=1 and P(n)=2xP(n-1)+P(n-2) for n>1. %H A317450 Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, <a href="https://arxiv.org/abs/1808.01264">The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials</a>, arXiv:1808.01264 [math.NT], 2018. %H A317450 Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Florez2/florez8.html">Star of David and other patterns in the Hosoya-like polynomials triangles</a>, 2018. %H A317450 R. Flórez, N. McAnally, and A. Mukherjees, <a href="http://math.colgate.edu/~integers/s18b2/s18b2.Abstract.html">Identities for the generalized Fibonacci polynomial</a>, Integers, 18B (2018), Paper No. A2. %H A317450 R. Flórez, R. Higuita and A. Mukherjees, <a href="http://math.colgate.edu/~integers/s14/s14.Abstract.html">Characterization of the strong divisibility property for generalized Fibonacci polynomials</a>, Integers, 18 (2018), Paper No. A14. %H A317450 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Discriminant.html">Discriminant</a> %H A317450 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PellPolynomial.html"> Pell Polynomial</a> %t A317450 Array[(-1)^((#-2)*(#-1)/2)* 2^((#-1)^2)*#^(#-3)&,15] %Y A317450 Cf. A006645, A001629, A001871, A006645, A007701, A045618, A045925, A093967, A193678, A317404, A317405, A317408, A317451, A318184, A318197. %Y A317450 Essentially the same as A086804. %K A317450 sign %O A317450 1,3 %A A317450 _Rigoberto Florez_, Aug 26 2018