This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317489 #26 Sep 13 2018 04:59:03 %S A317489 1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,2,1,1,2,1,1,0,3,0,1,1,3,2,1,0,4,0, %T A317489 1,1,1,4,3,1,1,0,5,0,3,1,1,5,4,3,1,1,0,6,0,6,0,1,1,6,5,6,3,1,0,7,0,10, %U A317489 0,1,1,1,7,6,10,6,1,1,0,8,0,15,0,4,1,1,8,7,15,10,4,1,1,0,9,0,21,0,10,0,1,1,9,8,21,15,10,4,1,0,10,0,28,0,20,0,1,1,1,10,9,28,21,20,10,1,1,0,11,0,36,0,35,0,5 %N A317489 Irregular triangle read by rows. For n >= 3 and 1 <= k <= floor(n/3), T(n,k) is the number of palindromic compositions of n into k parts of size at least 3. %F A317489 T(n,k) = 0 if n is odd and k is even; %F A317489 T(n,k) = binomial((n-1)/2-k,(k-1)/2) if n is odd and k is odd; %F A317489 T(n,k) = binomial((n-2)/2-k,(k-1)/2) if n is even and k is odd; %F A317489 T(n,k) = binomial((n-2)/2-k,(k-2)/2) if n is even and k is even. %e A317489 For n=24 and k=3, T(24,3) = 8 = binomial((24-2)/2-3, (3-1)/2) = binomial(8,1). %e A317489 The first entries of the irregular triangle formed by the values of T(n,k) are: %e A317489 1; %e A317489 1; %e A317489 1; %e A317489 1, 1; %e A317489 1, 0; %e A317489 1, 1; %e A317489 1, 0, 1; %e A317489 1, 1, 1; %e A317489 1, 0, 2; %e A317489 1, 1, 2, 1; %e A317489 1, 0, 3, 0; %e A317489 1, 1, 3, 2; %e A317489 1, 0, 4, 0, 1; %e A317489 1, 1, 4, 3, 1; %e A317489 1, 0, 5, 0, 3; %e A317489 1, 1, 5, 4, 3, 1; %e A317489 1, 0, 6, 0, 6, 0; %e A317489 1, 1, 6, 5, 6, 3; %e A317489 1, 0, 7, 0, 10, 0, 1; %e A317489 1, 1, 7, 6, 10, 6, 1; %e A317489 1, 0, 8, 0, 15, 0, 4; %e A317489 1, 1, 8, 7, 15, 10, 4, 1; %e A317489 1, 0, 9, 0, 21, 0, 10, 0; %e A317489 1, 1, 9, 8, 21, 15, 10, 4; %e A317489 1, 0, 10, 0, 28, 0, 20, 0, 1; %e A317489 1, 1, 10, 9, 28, 21, 20, 10, 1; %e A317489 1, 0, 11, 0, 36, 0, 35, 0, 5; %t A317489 T[n_, k_] := If[Mod[n, 2] == 1 && Mod[k, 2] == 0, 0, Binomial[Quotient[n-1, 2] - k, Quotient[k-1, 2]]]; %t A317489 Table[T[n, k], {n, 3, 30}, {k, 1, Quotient[n, 3]}] // Flatten (* _Jean-François Alcover_, Sep 13 2018, from PARI *) %o A317489 (PARI) T(n,k)=if(n%2==1&&k%2==0, 0, binomial((n-1)\2-k, (k-1)\2)); \\ _Andrew Howroyd_, Sep 07 2018 %Y A317489 Row sums of the triangle equal A226916(n+4). %K A317489 nonn,tabf %O A317489 3,18 %A A317489 _Christian Barrientos_ and _Sarah Minion_, Jul 29 2018