A317490 a(n) = min {i - j} where i*j is a factorization of the n-th partial product of the semiprimes (A112141).
0, 2, 6, 3, 12, 3, 126, 153, 765, 1050, 5348, 14850, 85050, 501200, 91280, 3661983, 25633881, 66271296, 215467945, 254861640, 5311480020, 75327142968, 122703152000, 2187956957004, 3449084839200, 19305922856220, 11327171375520, 58038845751810, 2222926571960640
Offset: 1
Keywords
Examples
a(1) = 0 since the first semiprime is 4 = 2 * 2; a(2) = 2 since 4*6 = 24 = 4 * 6; a(3) = 6 since 4*6*9 = 216 = 12 * 18; a(4) = 3 since 4*6*9*10 = 2160 = 45 * 48; a(5) = 12 since 4*6*9*10*14 = 30240 = 168 * 180; a(6) = 3 since 4*6*9*10*14*15 = 453600 = 172 * 175; a(7) = 126 since 4*6*9*10*14*15*21 = 9525600 = 3024 * 3150; etc.
Programs
-
Mathematica
SemiPrimePi[n_] := Sum[PrimePi[n/Prime[i]] - i + 1, {i, PrimePi[Sqrt[n]]}]; SemiPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[SemiPrimePi@a < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; a[n_] := Block[{sp = Times @@ Array[SemiPrime@# &, n], d}, d = DivisorSigma[0, sp]/2; -Subtract @@ Take[ Divisors@ sp, {d, d + 1}]]; a[1] = 0; Array[a, 29]