cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317491 Number of fully normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 30, 33, 46, 50, 68, 77, 100, 112, 146, 167, 201, 234, 290, 326, 400, 456, 545, 622, 744, 845, 1004, 1153, 1351, 1551, 1819, 2103, 2434, 2808, 3248, 3735, 4304, 4943, 5661, 6506, 7446, 8499, 9657, 11070, 12505, 14325, 16183
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Comments

An integer partition is fully normal if either it is of the form (1,1,...,1) or its multiplicities span an initial interval of positive integers and, sorted in weakly decreasing order, are themselves fully normal.

Examples

			The a(6) = 6 fully normal partitions are (6), (51), (42), (411), (321), (111111). Missing from this list are (33), (3111), (222), (2211), (21111).
		

Crossrefs

Programs

  • Mathematica
    fulnrmQ[ptn_]:=With[{qtn=Sort[Length/@Split[ptn],Greater]},Or[ptn=={}||Union[ptn]=={1},And[Union[qtn]==Range[Max[qtn]],fulnrmQ[qtn]]]];
    Table[Length[Select[IntegerPartitions[n],fulnrmQ]],{n,0,30}]

Formula

a(n) = A317245(n) iff n is 1 or a prime number.