This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317495 #25 Sep 08 2022 08:46:22 %S A317495 1,2,4,8,1,16,4,32,12,64,32,1,128,80,6,256,192,24,512,448,80,1,1024, %T A317495 1024,240,8,2048,2304,672,40,4096,5120,1792,160,1,8192,11264,4608,560, %U A317495 10,16384,24576,11520,1792,60,32768,53248,28160,5376,280,1,65536,114688,67584,15360,1120,12 %N A317495 Triangle read by rows: T(0,0) = 1; T(n,k) =2 * T(n-1,k) + T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0. %C A317495 The numbers in rows of the triangle are along a "second layer" of skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along a "second layer" of skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (1+2*x)^n and (2+x)^n are given in A128099 and A207538 respectively.) %C A317495 The coefficients in the expansion of 1/(1-2x-x^3) are given by the sequence generated by the row sums. %C A317495 The row sums give A008998 and Pisot sequences E(4,9), P(4,9) when n > 1, see A020708. %C A317495 If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.205569430400..., when n approaches infinity. %D A317495 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 358, 359. %H A317495 Zagros Lalo, <a href="/A317495/a317495.pdf">Second layer of skew diagonals in center-justified triangle of coefficients in expansion of (1 + 2x)^n</a> %H A317495 Zagros Lalo, <a href="/A317495/a317495_1.pdf">Second layer of skew diagonals in center-justified triangle of coefficients in expansion of (2 + x)^n</a> %F A317495 T(n,k) = 2^(n - 3k) / ((n - 3k)! k!) * (n - 2k)! where n >= 0 and k = 0..floor(n/3). %e A317495 Triangle begins: %e A317495 1; %e A317495 2; %e A317495 4; %e A317495 8, 1; %e A317495 16, 4; %e A317495 32, 12; %e A317495 64, 32, 1; %e A317495 128, 80, 6; %e A317495 256, 192, 24; %e A317495 512, 448, 80, 1; %e A317495 1024, 1024, 240, 8; %e A317495 2048, 2304, 672, 40; %e A317495 4096, 5120, 1792, 160, 1; %e A317495 8192, 11264, 4608, 560, 10; %e A317495 16384, 24576, 11520, 1792, 60; %e A317495 32768, 53248, 28160, 5376, 280, 1; %e A317495 65536, 114688, 67584, 15360, 1120, 12; %e A317495 131072, 245760, 159744, 42240, 4032, 84; %e A317495 262144, 524288, 372736, 112640, 13440, 448, 1; %t A317495 t[n_, k_] := t[n, k] = 2^(n - 3k)/((n - 3 k)! k!) (n - 2 k)!; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]} ] // Flatten %t A317495 t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]}] // Flatten %o A317495 (GAP) Flat(List([0..20],n->List([0..Int(n/3)],k->2^(n-3*k)/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # _Muniru A Asiru_, Jul 31 2018 %o A317495 (Magma) /* As triangle */ [[2^(n-3*k)/(Factorial(n-3*k)*Factorial(k))* Factorial(n-2*k): k in [0..Floor(n/3)]]: n in [0.. 15]]; // _Vincenzo Librandi_, Sep 05 2018 %Y A317495 Row sums give A008998, A020708. %Y A317495 Cf. A013609 %Y A317495 Cf. A038207 %Y A317495 Cf. A317494 %Y A317495 Cf. A128099, A207538. %Y A317495 Cf. A000079 (column 0), A001787 (column 1), A001788 (column 2), A001789 (column 3), A003472 (column 4). %K A317495 tabf,nonn,easy %O A317495 0,2 %A A317495 _Zagros Lalo_, Jul 30 2018