This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317497 #13 Sep 08 2022 08:46:22 %S A317497 1,3,9,27,1,81,6,243,27,729,108,1,2187,405,9,6561,1458,54,19683,5103, %T A317497 270,1,59049,17496,1215,12,177147,59049,5103,90,531441,196830,20412, %U A317497 540,1,1594323,649539,78732,2835,15,4782969,2125764,295245,13608,135,14348907,6908733,1082565,61236,945,1 %N A317497 Triangle T(n,k) = 3*T(n-1,k) + T(n-3,k-1) for k = 0..floor(n/3) with T(0,0) = 1 and T(n,k) = 0 for n or k < 0, read by rows. %C A317497 The numbers in rows of the triangle are along a "second layer" of skew diagonals pointing top-left in center-justified triangle given in A013610 ((1+3*x)^n) and along a "second layer" of skew diagonals pointing top-right in center-justified triangle given in A027465 ((3+x)^n), see links. (Note: First layer of skew diagonals in triangles of coefficients in expansions of (1+3*x)^n and (3+x)^n are given in A304236 and A304249 respectively.) %C A317497 The coefficients in the expansion of 1/(1-3x-x^3) are given by the sequence generated by the row sums. %C A317497 The row sums give A052541. %C A317497 If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.1038034027355..., when n approaches infinity. %D A317497 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 364-366 %H A317497 G. C. Greubel, <a href="/A317497/b317497.txt">Rows n = 0..120 of the irregular triangle, flattened</a> %H A317497 Zagros Lalo, <a href="/A317497/a317497.pdf">Second layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 3x)^n</a> %H A317497 Zagros Lalo, <a href="/A317497/a317497_1.pdf">Second layer skew diagonals in center-justified triangle of coefficients in expansion of (3 + x)^n</a> %F A317497 T(n,k) = 3^(n-3*k) * (n-2*k)!/(k! * (n-3*k)!) where n is a nonnegative integer and k = 0..floor(n/3). %e A317497 Triangle begins: %e A317497 1; %e A317497 3; %e A317497 9; %e A317497 27, 1; %e A317497 81, 6; %e A317497 243, 27; %e A317497 729, 108, 1; %e A317497 2187, 405, 9; %e A317497 6561, 1458, 54; %e A317497 19683, 5103, 270, 1; %e A317497 59049, 17496, 1215, 12; %e A317497 177147, 59049, 5103, 90; %e A317497 531441, 196830, 20412, 540, 1; %e A317497 1594323, 649539, 78732, 2835, 15; %e A317497 4782969, 2125764, 295245, 13608, 135; %e A317497 14348907, 6908733, 1082565, 61236, 945, 1; %e A317497 43046721, 22320522, 3897234, 262440, 5670, 18; %t A317497 T[n_, k_]:= T[n, k] = 3^(n-3k)(n-2k)!/((n-3k)! k!); Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ]//Flatten %t A317497 T[0, 0] = 1; T[n_, k_]:= T[n, k] = If[n<0 || k<0, 0, 3 T[n-1, k] + T[n-3, k-1]]; Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}]//Flatten %o A317497 (GAP) Flat(List([0..16],n->List([0..Int(n/3)],k->3^(n-3*k)/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # _Muniru A Asiru_, Aug 01 2018 %o A317497 (Magma) [3^(n-3*k)*Binomial(n-2*k,k): k in [0..Floor(n/3)], n in [0..24]]; // _G. C. Greubel_, May 12 2021 %o A317497 (Sage) flatten([[3^(n-3*k)*binomial(n-2*k,k) for k in (0..n//3)] for n in (0..24)]) # _G. C. Greubel_, May 12 2021 %Y A317497 Row sums give A052541. %Y A317497 Cf. A013610, A027465, A317496, A304236, A304249. %Y A317497 Cf. A000244 (column 0), A027471 (column 1), A027472 (column 2), A036216 (column 3), A036217 (column 4). %Y A317497 Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k): A027465 (q=1), A304249 (q=2), this sequence (q=3), A318773 (q=4). %K A317497 tabf,nonn,easy %O A317497 0,2 %A A317497 _Zagros Lalo_, Jul 31 2018