This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317500 #24 Aug 08 2025 23:29:29 %S A317500 1,1,1,1,1,2,1,4,1,6,1,8,1,10,4,1,12,12,1,14,24,1,16,40,1,18,60,8,1, %T A317500 20,84,32,1,22,112,80,1,24,144,160,1,26,180,280,16,1,28,220,448,80,1, %U A317500 30,264,672,240,1,32,312,960,560,1,34,364,1320,1120,32 %N A317500 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 2 * T(n-4,k-1) for k = 0..floor(n/4); T(n,k)=0 for n or k < 0. %C A317500 The numbers in rows of the triangle are along a "third layer" skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along a "third layer" skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (1+2*x)^n and (2+x)^n are given in A128099 and A207538 respectively.) %C A317500 The coefficients in the expansion of 1/(1-x-2*x^4) are given by the sequence generated by the row sums. %C A317500 The row sums give A052942. %C A317500 If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 1.543689012692076... (A256099: Decimal expansion of the real root of a cubic used by Omar Khayyám in a geometrical problem), when n approaches infinity. %D A317500 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3. %H A317500 Zagros Lalo, <a href="/A317500/a317500.pdf">Third layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 2x)^n</a> %H A317500 Zagros Lalo, <a href="/A317500/a317500_1.pdf">Third layer skew diagonals in center-justified triangle of coefficients in expansion of (2 + x)^n</a> %F A317500 T(n,k) = 2^k / ((n - 4*k)! k!) * (n - 3*k)! where n >= 0 and 0 <= k <= floor(n/4). %e A317500 Triangle begins: %e A317500 1; %e A317500 1; %e A317500 1; %e A317500 1; %e A317500 1, 2; %e A317500 1, 4; %e A317500 1, 6; %e A317500 1, 8; %e A317500 1, 10, 4; %e A317500 1, 12, 12; %e A317500 1, 14, 24; %e A317500 1, 16, 40; %e A317500 1, 18, 60, 8; %e A317500 1, 20, 84, 32; %e A317500 1, 22, 112, 80; %e A317500 1, 24, 144, 160; %e A317500 1, 26, 180, 280, 16; %e A317500 1, 28, 220, 448, 80; %e A317500 1, 30, 264, 672, 240; %e A317500 ... %t A317500 t[n_, k_] := t[n, k] = 2^k/((n - 4 k)! k!) (n - 3 k)!; Table[t[n, k], {n, 0, 20}, {k, 0, Floor[n/4]} ] // Flatten %t A317500 t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 4, k - 1]]; Table[t[n, k], {n, 0, 20}, {k, 0, Floor[n/4]}] // Flatten %Y A317500 Row sums give A052942. %Y A317500 Cf. A013609, A038207, A128099, A207538, A256099. %K A317500 tabf,nonn,easy %O A317500 0,6 %A A317500 _Zagros Lalo_, Sep 03 2018