This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317501 #14 Aug 08 2025 23:29:24 %S A317501 1,2,4,8,16,1,32,4,64,12,128,32,256,80,1,512,192,6,1024,448,24,2048, %T A317501 1024,80,4096,2304,240,1,8192,5120,672,8,16384,11264,1792,40,32768, %U A317501 24576,4608,160,65536,53248,11520,560,1,131072,114688,28160,1792,10,262144,245760,67584,5376,60 %N A317501 Triangle read by rows: T(0,0) = 1; T(n,k) = 2*T(n-1,k) + T(n-4,k-1) for k = 0..floor(n/4); T(n,k)=0 for n or k < 0. %C A317501 Unsigned version of the triangle in A317506. %C A317501 The numbers in rows of the triangle are along a "third layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along a "third layer" skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (1+2*x)^n and (2+x)^n are given in A128099 and A207538 respectively.) %C A317501 The coefficients in the expansion of 1/(1-2*x-x^4) are given by the sequence generated by the row sums. %C A317501 The row sums give A008999. %C A317501 If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.106919340376..., when n approaches infinity. %D A317501 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3. %H A317501 Zagros Lalo, <a href="/A317501/a317501.pdf">Third layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 2x)^n</a> %H A317501 Zagros Lalo, <a href="/A317501/a317501_1.pdf">Third layer skew diagonals in center-justified triangle of coefficients in expansion of (2 + x)^n</a> %F A317501 T(n,k) = 2^(n - 4*k) / ((n - 4*k)! k!) * (n - 3*k)! where n >= 0 and 0 <= k <= floor(n/4). %e A317501 Triangle begins: %e A317501 1; %e A317501 2; %e A317501 4; %e A317501 8; %e A317501 16, 1; %e A317501 32, 4; %e A317501 64, 12; %e A317501 128, 32; %e A317501 256, 80, 1; %e A317501 512, 192, 6; %e A317501 1024, 448, 24; %e A317501 2048, 1024, 80; %e A317501 4096, 2304, 240, 1; %e A317501 8192, 5120, 672, 8; %e A317501 16384, 11264, 1792, 40; %e A317501 32768, 24576, 4608, 160; %e A317501 65536, 53248, 11520, 560, 1; %e A317501 131072, 114688, 28160, 1792, 10; %e A317501 262144, 245760, 67584, 5376, 60; %t A317501 t[n_, k_] := t[n, k] = 2^(n - 4 k)/((n - 4 k)! k!) (n - 3 k)!; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/4]} ] // Flatten %t A317501 t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 4, k - 1]]; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/4]}] // Flatten %Y A317501 Row sums give A008999. %Y A317501 Cf. A013609, A038207, A128099, A207538, A317506. %K A317501 tabf,nonn,easy %O A317501 0,2 %A A317501 _Zagros Lalo_, Sep 03 2018