A317502 Triangle read by rows: T(0,0) = 1; T(n,k) = 3 T(n-1,k) - 2 * T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
1, 3, 9, 27, -2, 81, -12, 243, -54, 729, -216, 4, 2187, -810, 36, 6561, -2916, 216, 19683, -10206, 1080, -8, 59049, -34992, 4860, -96, 177147, -118098, 20412, -720, 531441, -393660, 81648, -4320, 16, 1594323, -1299078, 314928, -22680, 240, 4782969, -4251528, 1180980, -108864, 2160
Offset: 0
Examples
Triangle begins: 1; 3; 9; 27, -2; 81, -12; 243, -54; 729, -216, 4; 2187, -810, 36; 6561, -2916, 216; 19683, -10206, 1080, -8; 59049, -34992, 4860, -96; 177147, -118098, 20412, -720; 531441, -393660, 81648, -4320, 16; 1594323, -1299078, 314928, -22680, 240; 4782969, -4251528, 1180980, -108864, 2160; 14348907, -13817466, 4330260, -489888, 15120, -32; 43046721, -44641044, 15588936, -2099520, 90720, -576;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 136, 396, 397.
Links
Programs
-
Mathematica
t[n_, k_] := t[n, k] = 3^(n - 3k) * (-2)^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ] // Flatten t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 3 * t[n - 1, k] - 2 * t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}] // Flatten
Formula
T(n,k) = 3^(n - 3k) * (-2)^k / ((n - 3k)! k!) * (n - 2k)! where n is a nonnegative integer and k = 0..floor(n/3).
Comments