This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317503 #12 Aug 23 2018 16:30:14 %S A317503 1,-2,4,-8,3,16,-12,-32,36,64,-96,9,-128,240,-54,256,-576,216,-512, %T A317503 1344,-720,27,1024,-3072,2160,-216,-2048,6912,-6048,1080,4096,-15360, %U A317503 16128,-4320,81,-8192,33792,-41472,15120,-810,16384,-73728,103680,-48384,4860,-32768,159744,-253440,145152,-22680,243 %N A317503 Triangle read by rows: T(0,0) = 1; T(n,k) = -2 T(n-1,k) + 3 * T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0. %C A317503 The numbers in rows of the triangle are along "second layer" skew diagonals pointing top-left in center-justified triangle given in A303901 ((3-2*x)^n) and along "second layer" skew diagonals pointing top-right in center-justified triangle given in A317498 ((-2+3x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (3-2*x)^n and (-2+3x)^n are given in A303941 and A302747 respectively.) The coefficients in the expansion of 1/(1 + 2x - 3x^3) are given by the sequence generated by the row sums. The row sums give A317499. %D A317503 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 136, 396, 397. %H A317503 Shara Lalo, <a href="/A317503/a317503.pdf">Second layer skew diagonals in center-justified triangle of coefficients in expansion of (3 - 2x)^n</a> %H A317503 Shara Lalo, <a href="/A317503/a317503_1.pdf">Second layer skew diagonals in center-justified triangle of coefficients in expansion of (-2 + 3x)^n</a> %F A317503 T(n,k) = (-2)^(n - 3k) * 3^k / ((n - 3k)! k!) * (n - 2k)! where n is a nonnegative integer and k = 0..floor(n/3). %e A317503 Triangle begins: %e A317503 1; %e A317503 -2; %e A317503 4; %e A317503 -8, 3; %e A317503 16, -12; %e A317503 -32, 36; %e A317503 64, -96, 9; %e A317503 -128, 240, -54; %e A317503 256, -576, 216; %e A317503 -512, 1344, -720, 27; %e A317503 1024, -3072, 2160, -216; %e A317503 -2048, 6912, -6048, 1080; %e A317503 4096, -15360, 16128, -4320, 81; %e A317503 -8192, 33792, -41472, 15120, -810; %e A317503 16384, -73728, 103680, -48384, 4860; %e A317503 -32768, 159744, -253440, 145152, -22680, 243; %e A317503 65536, -344064, 608256, -414720, 90720, -2916; %t A317503 t[n_, k_] := t[n, k] = (-2)^(n - 3k) * 3^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]} ] // Flatten %t A317503 t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, -2 * t[n - 1, k] + 3 * t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/3]}] // Flatten %Y A317503 Row sums give A317499. %Y A317503 Cf. A303901, A317498. %Y A317503 Cf. A090388. %Y A317503 Cf. A303941, A302747. %K A317503 tabf,sign,easy %O A317503 0,2 %A A317503 _Shara Lalo_, Aug 02 2018