This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317504 #8 Aug 23 2018 16:30:24 %S A317504 1,2,4,8,-1,16,-4,32,-12,64,-32,1,128,-80,6,256,-192,24,512,-448,80, %T A317504 -1,1024,-1024,240,-8,2048,-2304,672,-40,4096,-5120,1792,-160,1,8192, %U A317504 -11264,4608,-560,10,16384,-24576,11520,-1792,60,32768,-53248,28160,-5376,280,-1,65536,-114688,67584,-15360,1120,-12 %N A317504 Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0. %C A317504 The numbers in rows of the triangle are along "second layer" skew diagonals pointing top-right in center-justified triangle given in A065109 ((2-x)^n) and along "second layer" skew diagonals pointing top-left in center-justified triangle given in A303872 ((-1+2x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (2-x)^n and (-1+2x)^n are given in A133156 (coefficients of Chebyshev polynomials of the second kind) and A305098 respectively.) The coefficients in the expansion of 1/(1-2x+x^3) are given by the sequence generated by the row sums. The row sums give A000071 (Fibonacci numbers - 1). If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 1.61803398874989484... (A001622: Decimal expansion of Golden ratio (phi or tau) = (1 + sqrt(5))/2), when n approaches infinity. %D A317504 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 139-141, 391-393. %H A317504 Shara Lalo, <a href="/A317504/a317504.pdf">Second layer skew diagonals in center-justified triangle of coefficients in expansion of (2 - x)^n</a> %H A317504 Shara Lalo, <a href="/A317504/a317504_1.pdf">Second layer skew diagonals in center-justified triangle of coefficients in expansion of (-1 + 2x)^n</a> %F A317504 T(n,k) = 2^(n - 3k) * (-2)^k / ((n - 3k)! k!) * (n - 2k)! where n is a nonnegative integer and k = 0..floor(n/3). %e A317504 Triangle begins: %e A317504 1; %e A317504 2; %e A317504 4; %e A317504 8, -1; %e A317504 16, -4; %e A317504 32, -12; %e A317504 64, -32, 1; %e A317504 128, -80, 6; %e A317504 256, -192, 24; %e A317504 512, -448, 80, -1; %e A317504 1024, -1024, 240, -8; %e A317504 2048, -2304, 672, -40; %e A317504 4096, -5120, 1792, -160, 1; %e A317504 8192, -11264, 4608, -560, 10; %e A317504 16384, -24576, 11520, -1792, 60; %e A317504 32768, -53248, 28160, -5376, 280, -1; %e A317504 65536, -114688, 67584, -15360, 1120, -12; %e A317504 131072, -245760, 159744, -42240, 4032, -84; %e A317504 262144, -524288, 372736, -112640, 13440, -448, 1; %t A317504 t[n_, k_] := t[n, k] = 2^(n - 3k) * (-1)^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/3]} ] // Flatten %t A317504 t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 * t[n - 1, k] - t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/3]}] // Flatten %Y A317504 Row sums give A000071. %Y A317504 Cf. A065109, A303872. %Y A317504 Cf. A133156, A305098. %Y A317504 Cf. A001622. %K A317504 tabf,sign,easy %O A317504 0,2 %A A317504 _Shara Lalo_, Aug 02 2018