This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317506 #16 Jul 21 2021 22:50:06 %S A317506 1,2,4,8,16,-1,32,-4,64,-12,128,-32,256,-80,1,512,-192,6,1024,-448,24, %T A317506 2048,-1024,80,4096,-2304,240,-1,8192,-5120,672,-8,16384,-11264,1792, %U A317506 -40,32768,-24576,4608,-160,65536,-53248,11520,-560,1,131072,-114688,28160,-1792,10 %N A317506 Triangle read by rows: T(0,0) = 1; T(n,k) = 2 T(n-1,k) - T(n-4,k-1) for 0 <= k <= floor(n/4); T(n,k)=0 for n or k < 0. %C A317506 The numbers in rows of the triangle are along "third layer" skew diagonals pointing top-right in center-justified triangle given in A065109 ((2-x)^n) and along "third layer" skew diagonals pointing top-left in center-justified triangle given in A303872 ((-1+2x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (2-x)^n and (-1+2x)^n are given in A133156 (coefficients of Chebyshev polynomials of the second kind) and A305098 respectively.) The coefficients in the expansion of 1/(1-2x+x^4) are given by the sequence generated by the row sums. The row sums give A008937. If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 1.83928675521416113... (A058265: Decimal expansion of the tribonacci constant t, the real root of x^3-x^2-x-1), when n approaches infinity. %D A317506 Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3. %H A317506 Shara Lalo, <a href="/A317506/a317506.pdf">Third layer skew diagonals in center-justified triangle of coefficients in expansion of (2 - x)^n</a> %H A317506 Shara Lalo, <a href="/A317506/a317506_1.pdf">Third layer skew diagonals in center-justified triangle of coefficients in expansion of (-1 + 2x)^n</a> %F A317506 T(n,k) = 2^(n - 4*k) * (-1)^k / ((n - 4*k)! k!) * (n - 3*k)! where n >= 0 and 0 <= k <= floor(n/4). %e A317506 Triangle begins: %e A317506 1; %e A317506 2; %e A317506 4; %e A317506 8; %e A317506 16, -1; %e A317506 32, -4; %e A317506 64, -12; %e A317506 128, -32; %e A317506 256, -80, 1; %e A317506 512, -192, 6; %e A317506 1024, -448, 24; %e A317506 2048, -1024, 80; %e A317506 4096, -2304, 240, -1; %e A317506 8192, -5120, 672, -8; %e A317506 16384, -11264, 1792, -40; %e A317506 32768, -24576, 4608, -160; %e A317506 65536, -53248, 11520, -560, 1; %e A317506 131072, -114688, 28160, -1792, 10; %e A317506 262144, -245760, 67584, -5376, 60; %t A317506 t[n_, k_] := t[n, k] = 2^(n - 4 k) * (-1)^k/((n - 4 k)! k!) * (n - 3 k)!; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/4]} ] // Flatten %t A317506 t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 * t[n - 1, k] - t[n - 4, k - 1]]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/4]}] // Flatten %Y A317506 Row sums give A008937. %Y A317506 Cf. A065109, A303872. %Y A317506 Cf. A133156, A305098. %Y A317506 Cf. A058265. %K A317506 tabf,sign,easy %O A317506 0,2 %A A317506 _Shara Lalo_, Aug 31 2018