This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317507 #27 Mar 22 2023 04:29:05 %S A317507 1,5,7,8,10,11,29,62,486,614,773,1321,1906,2621 %N A317507 Numbers k whose generalized Wilson quotient A157249(k) is prime. %C A317507 The corresponding primes are 2, 5, 103, 13, 19, 329891, ... %C A317507 Supersequence of A050299 (except for 1, the prime terms of this sequence). %C A317507 No more terms below 10^4. %t A317507 p[n_] := Times @@ Select[Range[n], CoprimeQ[n, #] &]; e[1 | 2 | 4] = 1; e[n_] := (fi = FactorInteger[n]; If[MatchQ[fi, {{(p_)?OddQ, _}} | {{2, 1}, {_, _}}], 1, -1]); a[n_] := (p[n] + e[n])/n; n = 1; s={}; Do[If[PrimeQ[a[n]], AppendTo[s,n]], {n, 1, 1000}]; s (* after _Jean-François Alcover_ at A157249 *) %o A317507 (PARI) phito(n) = prod(k=2, n-1, k^(gcd(k, n)==1)); \\ A001783 %o A317507 is(n) = if(n%2, isprimepower(n) || n==1, n==2 || n==4 || (isprimepower(n/2, &n) && n>2)); \\ A033948 %o A317507 e(n) = if (is(n), 1, -1); %o A317507 gw(n) = (phito(n)+e(n))/n; %o A317507 isok(n) = isprime(gw(n)); \\ _Michel Marcus_, Oct 28 2018 %Y A317507 Cf. A007619, A050299, A157249. %K A317507 nonn,more %O A317507 1,2 %A A317507 _Amiram Eldar_, Sep 29 2018