This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317508 #14 Sep 29 2018 12:56:55 %S A317508 1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,5,1,3,1,4,2,2,1,6,2,2,3,4,1,4,1,7,2,2, %T A317508 2,6,1,2,2,7,1,4,1,4,3,2,1,10,2,3,2,4,1,5,2,7,2,2,1,7,1,2,4,11,2,4,1, %U A317508 4,2,4,1,9,1,2,3,4,2,4,1,11,5,2,1,8,2,2 %N A317508 Number of ways to split the integer partition with Heinz number n into consecutive subsequences with weakly decreasing sums. %C A317508 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %e A317508 The a(60) = 7 split partitions: %e A317508 (3)(2)(1)(1) %e A317508 (32)(1)(1) %e A317508 (3)(21)(1) %e A317508 (3)(2)(11) %e A317508 (321)(1) %e A317508 (32)(11) %e A317508 (3211) %t A317508 comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}]; %t A317508 Table[Length[Select[compositionPartitions[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],OrderedQ[Total/@#]&]],{n,100}] %Y A317508 Cf. A001970, A056239, A063834, A255397, A296150, A316223, A317545, A317546, A319002, A319004. %Y A317508 Cf. A316245, A317715, A318434, A318683, A318684, A319794. %K A317508 nonn %O A317508 1,4 %A A317508 _Gus Wiseman_, Sep 29 2018