This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317532 #9 Dec 31 2019 16:38:18 %S A317532 1,2,2,4,8,4,8,34,26,8,16,124,168,76,16,32,448,962,674,208,32,64,1568, %T A317532 5224,5344,2392,544,64,128,5448,27336,39834,24578,7816,1376,128,256, %U A317532 18768,139712,283864,236192,99832,24048,3392,256,512,64448,702496,1960320,2161602,1186866,370976,70656,8192,512 %N A317532 Regular triangle read by rows: T(n,k) is the number of multiset partitions of normal multisets of size n into k blocks, where a multiset is normal if it spans an initial interval of positive integers. %H A317532 Andrew Howroyd, <a href="/A317532/b317532.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows) %e A317532 The T(3,2) = 8 multiset partitions: %e A317532 {{1},{1,1}} %e A317532 {{1},{2,2}} %e A317532 {{2},{1,2}} %e A317532 {{1},{1,2}} %e A317532 {{2},{1,1}} %e A317532 {{1},{2,3}} %e A317532 {{2},{1,3}} %e A317532 {{3},{1,2}} %e A317532 Triangle begins: %e A317532 1 %e A317532 2 2 %e A317532 4 8 4 %e A317532 8 34 26 8 %e A317532 16 124 168 76 16 %e A317532 32 448 962 674 208 32 %e A317532 ... %t A317532 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A317532 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A317532 allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; %t A317532 Table[Length[Select[Join@@mps/@allnorm[n],Length[#]==k&]],{n,7},{k,n}] %o A317532 (PARI) \\ here B(n,k) is A239473(n,k). %o A317532 B(n,k)={sum(r=k, n, binomial(r, k)*(-1)^(r-k))} %o A317532 Row(n)={Vecrev(sum(j=1, n, B(n,j)*polcoef(1/prod(k=1, n, (1 - x^k*y + O(x*x^n))^binomial(k+j-1,j-1)), n))/y)} %o A317532 { for(n=1, 10, print(Row(n))) } \\ _Andrew Howroyd_, Dec 31 2019 %Y A317532 Row sums are A255906. %Y A317532 Cf. A007716, A034691, A255397, A255903. %K A317532 nonn,tabl %O A317532 1,2 %A A317532 _Gus Wiseman_, Jul 30 2018 %E A317532 Terms a(29) and beyond from _Andrew Howroyd_, Dec 31 2019