A317552 Irregular triangle where T(n,k) is the sum of coefficients in the expansion of p(y) in terms of Schur functions, where p is power-sum symmetric functions and y is the integer partition with Heinz number A215366(n,k).
1, 0, 2, 1, 0, 4, 0, 2, 1, 0, 10, 1, 0, 0, 2, 2, 0, 26, 0, 0, 1, 4, 0, 0, 0, 4, 4, 0, 76, 1, 0, 0, 0, 0, 2, 2, 4, 0, 0, 0, 8, 10, 0, 232, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0, 12, 0, 4, 2, 8, 0, 0, 0, 20, 26, 0, 764, 1, 0, 0, 0, 2, 0, 0, 4, 2, 0, 0, 1, 10, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: 1 0 2 1 0 4 0 2 1 0 10 1 0 0 2 2 0 26 0 0 1 4 0 0 0 4 4 0 76 1 0 0 0 0 2 2 4 0 0 0 8 10 0 232 A215366(6,4) = 25 corresponds to the partition (33). Since p(33) = s(6) + 2 s(33) - s(51) + 2 s(222) - 2 s(321) + s(411) + s(3111) - s(21111) + s(111111) has sum of coefficients 1 + 2 - 1 + 2 - 2 + 1 + 1 - 1 + 1 = 4, we conclude T(6,4) = 4.
Comments