A317556 a(n) is the smallest composite k such that k divides 2^(k*n-1) - 1.
341, 80519, 15, 511, 65, 42671, 15, 161, 445, 35551, 15, 2047, 85, 80129, 15, 1561, 33, 190679, 15, 983927, 85, 511, 15, 11303, 345, 2201, 15, 217, 65, 188393, 15, 39071, 129, 2047, 15, 8727391, 33, 63457, 15, 511, 65, 2417783, 15, 64759, 85, 2921, 15, 1898777, 133, 119063, 15, 2263, 65, 10097
Offset: 1
Keywords
Examples
a(1) = A001567(1) = 341.
Programs
-
Mathematica
a[n_] := Block[{k = 9}, While[PrimeQ[k] || PowerMod[2, k*n - 1, k] != 1, k += 2]; k]; Array[a, 54] (* Giovanni Resta, Sep 16 2018 *)
-
PARI
isok(k,n)=Mod(2, k)^(k*n-1)==1; a(n)={my(k=2); while (isprime(k)||!isok(k,n), k++); k; }
Comments