cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317578 Number T(n,k) of distinct integers that are product of the parts of exactly k partitions of n into 3 positive parts; triangle T(n,k), n>=3, k>=1, read by rows.

This page as a plain text file.
%I A317578 #27 Jun 13 2021 07:16:35
%S A317578 1,1,2,3,4,5,7,8,10,12,12,1,12,2,19,19,1,22,1,27,28,1,31,1,31,3,38,1,
%T A317578 42,1,46,1,50,1,50,3,57,2,51,7,64,3,71,2,70,5,77,4,85,3,86,5,84,9,104,
%U A317578 2,104,5,108,6,108,8,1,123,5,122,9,119,14,136,9,147,7
%N A317578 Number T(n,k) of distinct integers that are product of the parts of exactly k partitions of n into 3 positive parts; triangle T(n,k), n>=3, k>=1, read by rows.
%H A317578 Alois P. Heinz, <a href="/A317578/b317578.txt">Rows n = 3..5000, flattened</a>
%F A317578 Sum_{k>=1} k * T(n,k) = A001399(n-3) = A069905(n) = A211540(n+2).
%F A317578 Sum_{k>=2} T(n,k) = A060277(n).
%F A317578 min { n >= 0 : T(n,k) > 0 } = A103277(k).
%e A317578 T(13,2) = 1: only 36 is product of the parts of exactly 2 partitions of 13 into 3 positive parts: [6,6,1], [9,2,2].
%e A317578 T(14,2) = 2: 40 ([8,5,1], [10,2,2]) and 72 ([6,6,2], [8,3,3]).
%e A317578 T(39,3) = 1: 1200 ([20,15,4], [24,10,5], [25,8,6]).
%e A317578 T(49,3) = 2: 3024 ([24,18,7], [27,14,8], [28,12,9]) and 3600 ([20,20,9], [24,15,10], [25,12,12]).
%e A317578 Triangle T(n,k) begins:
%e A317578    1;
%e A317578    1;
%e A317578    2;
%e A317578    3;
%e A317578    4;
%e A317578    5;
%e A317578    7;
%e A317578    8;
%e A317578   10;
%e A317578   12;
%e A317578   12, 1;
%e A317578   12, 2;
%e A317578   19;
%e A317578   19, 1;
%e A317578   22, 1;
%p A317578 b:= proc(n) option remember; local m, c, i, j, h, w;
%p A317578       m, c:= proc() 0 end, 0; forget(m);
%p A317578       for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do
%p A317578         h:= i*j*(n-j-i);
%p A317578         w:= m(h); w:= w+1; m(h):= w;
%p A317578         c:= c+x^w-x^(w-1)
%p A317578       od od; c
%p A317578     end:
%p A317578 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
%p A317578 seq(T(n), n=3..100);
%t A317578 b[n_] := b[n] = Module[{m, c, i, j, h, w} , m[_] = 0; c = 0; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n - i, 2], j++, h = i*j*(n-j-i); w = m[h]; w++; m[h] = w; c = c + x^w - x^(w-1)]]; c];
%t A317578 T[n_] := CoefficientList[b[n], x] // Rest;
%t A317578 T /@ Range[3, 100] // Flatten (* _Jean-François Alcover_, Jun 13 2021, after _Alois P. Heinz_ *)
%Y A317578 Cf. A001399, A060277, A069905, A103277, A211540.
%Y A317578 Row sums give A306403.
%Y A317578 Column k=1 gives A306435.
%K A317578 nonn,look,tabf
%O A317578 3,3
%A A317578 _Alois P. Heinz_, Jul 31 2018