This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317584 #8 Jan 01 2021 14:21:57 %S A317584 1,4,6,19,14,113,30,584,1150,4023,112,119866,202,432061,5442765, %T A317584 16646712,594,738090160,980,13160013662,113864783987,39049423043,2510, %U A317584 44452496723053,19373518220009,21970704599961,8858890258339122,43233899006497146,9130,4019875470540832643 %N A317584 Number of multiset partitions of strongly normal multisets of size n such that all blocks have the same size. %C A317584 A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. %F A317584 a(p) = 2*A000041(p) for prime p. - _Andrew Howroyd_, Jan 01 2021 %e A317584 The a(4) = 19 multiset partitions: %e A317584 {{1,1,1,1}}, {{1,1},{1,1}}, {{1},{1},{1},{1}}, %e A317584 {{1,1,1,2}}, {{1,1},{1,2}}, {{1},{1},{1},{2}}, %e A317584 {{1,1,2,2}}, {{1,1},{2,2}}, {{1,2},{1,2}}, {{1},{1},{2},{2}}, %e A317584 {{1,1,2,3}}, {{1,1},{2,3}}, {{1,2},{1,3}}, {{1},{1},{2},{3}}, %e A317584 {{1,2,3,4}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}, {{1},{2},{3},{4}}. %t A317584 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A317584 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A317584 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A317584 Table[Length[Select[Join@@mps/@strnorm[n],SameQ@@Length/@#&]],{n,6}] %o A317584 (PARI) \\ See links in A339645 for combinatorial species functions. %o A317584 cycleIndex(n)={sum(n=1, n, x^n*sumdiv(n, d, sApplyCI(symGroupCycleIndex(d), d, symGroupCycleIndex(n/d), n/d))) + O(x*x^n)} %o A317584 StronglyNormalLabelingsSeq(cycleIndex(15)) \\ _Andrew Howroyd_, Jan 01 2021 %Y A317584 Cf. A000005, A000041, A007716, A038041, A255906, A298422, A306017, A306018, A306019, A306020, A306021, A317583. %K A317584 nonn %O A317584 1,2 %A A317584 _Gus Wiseman_, Aug 01 2018 %E A317584 Terms a(9) and beyond from _Andrew Howroyd_, Jan 01 2021