cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317593 Take a number z of x digits and consider any concatenation z = concat(y_1, y_2, ..., y_i) where y_1, y_2, ..., y_i have the same number of digits. Then let f(z) be the sum of the products y_1*y_2*...*y_i for all those concatenations. Sequence lists numbers z such that f(f(z)) = z. (see example.)

Original entry on oeis.org

1488, 2992, 5692, 101875, 165864, 207712, 425830, 569953, 872539, 20988160, 25768720, 26645280, 48218580, 48418542, 50519902, 1055195775, 1175196540, 1661395240, 1971592669, 2056199802, 2601999369, 3016199710, 3068196150, 3545196660, 3835794250, 3896098816, 5520199708
Offset: 1

Views

Author

Paolo P. Lava, Aug 01 2018

Keywords

Comments

The number of concatenations is d(x)-1, where d(x) is the number of divisors of x (z = concat(z) is excluded).

Examples

			z = 1488, x = 4. The concatenations are (1,4,8,8), (14,88) and f(z) = 1*4*8*8 + 14*88 = 1488 (fixed point).
z = 165864, x = 6. The concatenations are (1,6,5,8,6,4), (16,58,64), (165,864) and f(z) = 1*6*5*8*6*4 + 16*58*64 + 165*864 = 207712.
Now, z = 207712, x = 6. The concatenations are (2,0,7,7,1,2), (20,77,12), (207,712) and f(z) = 2*0*7*7*1*2 + 20*77*12 + 207*712 = 165864.
Therefore both 165864 and 207712 are terms of the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local i,k,x,y,z; z:=0; i:=sort([op(divisors(ilog10(w)+1))]); for k from 1 to nops(i)-1 do x:=1; y:=w; while y>0 do x:=x*(y mod 10^i[k]); y:=trunc(y/10^i[k]); od; z:=z+x; od; z; end:P:=proc(q) local c,d,j,n; for j from 1 to q do if not isprime(j+1) then for n from 10^j to 10^(j+1)-1 do c:=T(n); if c>0 then d:=T(c); fi; if d=n then print(n); fi; od; fi; od; end: P(10^9);
  • Mathematica
    f[n_] := With[{w = IntegerDigits@ n}, Total@ Flatten@ Map[Times @@ Map[FromDigits, Partition[w, #, #]] &, Most@ Divisors@ Length@ w]]; Select[Range[10^6], f@ f@ # == # &] (* Michael De Vlieger, Aug 05 2018 *)

Extensions

a(16)-a(27) from Giovanni Resta, Aug 01 2018