This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317632 #11 Dec 10 2018 16:43:55 %S A317632 0,0,1,13,294,12198,946712,140168924,40223263760,22598607583376, %T A317632 24999757695984960,54630901092648916704,236304498092496715916416, %U A317632 2026201628540583716863002880,34482826679730591694177065948928,1166004710785628820717860509317415168 %N A317632 Number of connected induced nonempty non-singleton subgraphs of labeled connected graphs with n vertices. %C A317632 The edges of an induced subgraph G|S are those edges of G with both ends contained in S, where S is a subset of the vertices. %H A317632 Andrew Howroyd, <a href="/A317632/b317632.txt">Table of n, a(n) for n = 0..50</a> %H A317632 Gus Wiseman, <a href="/A317632/a317632.png">All 294 connected induced subgraphs of labeled connected graphs with 4 vertices.</a> %o A317632 (PARI) %o A317632 seq(n)={ %o A317632 my(p=sum(k=0, n, 2^binomial(k, 2)*x^k/k!, O(x*x^n))); %o A317632 my(g=Vec(serlaplace(log(p)))); %o A317632 my(q=sum(k=0, n, sum(j=2, k, binomial(k,j)*g[j]*2^(binomial(k-j, 2) + j*(k-j)))*x^k/k!, O(x*x^n))); %o A317632 Vec(serlaplace(q/p), -n-1) %o A317632 } \\ _Andrew Howroyd_, Dec 10 2018 %Y A317632 Cf. A001187, A006125, A048143, A293510, A304717, A317631, A317634, A317635. %K A317632 nonn %O A317632 0,4 %A A317632 _Gus Wiseman_, Aug 02 2018 %E A317632 a(6) from _Gus Wiseman_, Dec 10 2018 %E A317632 Terms a(7) and beyond from _Andrew Howroyd_, Dec 10 2018