cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317652 Number of free pure symmetric multifunctions whose leaves are an integer partition of n.

This page as a plain text file.
%I A317652 #9 Aug 28 2018 20:20:43
%S A317652 1,1,2,6,22,93,421,2010,9926,50357,260728,1372436,7321982,39504181,
%T A317652 215168221,1181540841,6534058589,36357935615,203414689462,
%U A317652 1143589234086,6457159029573,36602333187792,208214459462774,1188252476400972,6801133579291811,39032172166792887
%N A317652 Number of free pure symmetric multifunctions whose leaves are an integer partition of n.
%C A317652 A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.
%H A317652 Andrew Howroyd, <a href="/A317652/b317652.txt">Table of n, a(n) for n = 0..200</a>
%e A317652 The a(4) = 22 free pure symmetric multifunctions:
%e A317652   1[1[1[1]]]  1[1[2]]  1[3]  2[2]  4
%e A317652   1[1[1][1]]  1[2[1]]  3[1]
%e A317652   1[1][1[1]]  2[1[1]]
%e A317652   1[1[1]][1]  1[1][2]
%e A317652   1[1][1][1]  1[2][1]
%e A317652   1[1[1,1]]   2[1][1]
%e A317652   1[1,1[1]]   1[1,2]
%e A317652   1[1][1,1]   2[1,1]
%e A317652   1[1,1][1]
%e A317652   1[1,1,1]
%t A317652 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A317652 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A317652 exprUsing[m_]:=exprUsing[m]=If[Length[m]==0,{{}},If[Length[m]==1,{First[m]},Join@@Cases[Union[Table[PR[m[[s]],m[[Complement[Range[Length[m]],s]]]],{s,Take[Subsets[Range[Length[m]]],{2,-2}]}]],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h],Union[Sort/@Tuples[exprUsing/@p]]}],{p,mps[g]}]]]];
%t A317652 Table[Sum[Length[exprUsing[y]],{y,IntegerPartitions[n]}],{n,0,6}]
%o A317652 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
%o A317652 seq(n)={my(v=[]); for(n=1, n, my(t=EulerT(v)); v=concat(v, 1 + sum(k=1, n-1, v[k]*t[n-k]))); concat([1],v)} \\ _Andrew Howroyd_, Aug 28 2018
%Y A317652 Cf. A001003, A052893, A053492, A277996, A279944, A280000.
%Y A317652 Cf. A317653, A317654, A317655, A317656, A317658.
%K A317652 nonn
%O A317652 0,3
%A A317652 _Gus Wiseman_, Aug 03 2018
%E A317652 Terms a(12) and beyond from _Andrew Howroyd_, Aug 28 2018