This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317655 #8 Aug 03 2018 08:17:06 %S A317655 0,1,1,2,3,8,10,15,50,35,37,96,144,160,299,184,589,840,2483,578,1729, %T A317655 750,10746,1627,2246,3578,9357,3367,47420,6397,212668,3155,9818,17280, %U A317655 15666,18250,966324,84232,54990,12471,4439540,45015 %N A317655 Number of free pure symmetric multifunctions with leaves a multiset whose multiplicities are the integer partition with Heinz number n. %C A317655 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A317655 A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions. %e A317655 The a(6) = 8 free pure symmetric multifunctions: %e A317655 1[1[2]] %e A317655 1[2[1]] %e A317655 2[1[1]] %e A317655 1[1][2] %e A317655 1[2][1] %e A317655 2[1][1] %e A317655 1[1,2] %e A317655 2[1,1] %t A317655 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A317655 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A317655 exprUsing[m_]:=exprUsing[m]=If[Length[m]==0,{},If[Length[m]==1,{First[m]},Join@@Cases[Union[Table[PR[m[[s]],m[[Complement[Range[Length[m]],s]]]],{s,Take[Subsets[Range[Length[m]]],{2,-2}]}]],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h],Union[Sort/@Tuples[exprUsing/@p]]}],{p,mps[g]}]]]]; %t A317655 got[y_]:=Join@@Table[Table[i,{y[[i]]}],{i,Range[Length[y]]}]; %t A317655 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A317655 Table[Length[exprUsing[got[Reverse[primeMS[n]]]]],{n,40}] %Y A317655 Cf. A001003, A052893, A053492, A255906, A277996, A279944, A280000. %Y A317655 Cf. A317652, A317653, A317654, A317656, A317658. %K A317655 nonn %O A317655 1,4 %A A317655 _Gus Wiseman_, Aug 03 2018