A317658 Number of positions in the n-th free pure symmetric multifunction (with empty expressions allowed) with one atom.
1, 2, 3, 3, 4, 4, 5, 4, 4, 5, 6, 5, 5, 6, 7, 4, 6, 6, 7, 8, 5, 7, 7, 8, 5, 9, 5, 6, 8, 8, 9, 5, 6, 10, 6, 5, 7, 9, 9, 10, 6, 7, 11, 7, 6, 8, 10, 10, 6, 11, 7, 8, 12, 8, 7, 9, 11, 11, 7, 12, 8, 9, 13, 5, 9, 8, 10, 12, 12, 8, 13, 9, 10, 14, 6, 10, 9, 11, 13, 13
Offset: 1
Keywords
Examples
The first twenty Mathematica expressions: 1: o 2: o[] 3: o[][] 4: o[o] 5: o[][][] 6: o[o][] 7: o[][][][] 8: o[o[]] 9: o[][o] 10: o[o][][] 11: o[][][][][] 12: o[o[]][] 13: o[][o][] 14: o[o][][][] 15: o[][][][][][] 16: o[o,o] 17: o[o[]][][] 18: o[][o][][] 19: o[o][][][][] 20: o[][][][][][][]
Links
- Mathematica Reference, Orderless
Crossrefs
Programs
-
Mathematica
nn=100; radQ[n_]:=If[n===1,False,GCD@@FactorInteger[n][[All,2]]===1]; rad[n_]:=rad[n]=If[n===0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]]; Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn]; exp[n_]:=If[n===1,x,With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]]; Table[exp[n],{n,1,nn}]
Formula
a(rad(x)^(prime(y_1) * ... * prime(y_k))) = a(x) + a(y_1) + ... + a(y_k).
e(2^(2^n)) = o[o,...,o].
e(2^prime(2^prime(2^...))) = o[o[...o[o]]].
e(rad(rad(rad(...)^2)^2)^2) = o[o][o]...[o].
Comments