This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317666 #13 Aug 13 2018 03:53:47 %S A317666 1,2,7,48,590,10602,244457,6767792,216875258,7863473864,317632851912, %T A317666 14132208327052,686514289288897,36154193924315170,2051928741855927465, %U A317666 124870207134047889232,8112089716821244526285,560396754826502247713090,41024663835523296400398275,3172738829903313189522259140,258493327059457440608140711531 %N A317666 G.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - (1-x)^(2*n) )^n = 1. %H A317666 Paul D. Hanna, <a href="/A317666/b317666.txt">Table of n, a(n) for n = 0..200</a> %F A317666 G.f. A(x) satisfies: %F A317666 (1) 1 = Sum_{n>=0} ( 1/A(x) - (1-x)^(2*n) )^n. %F A317666 (2) A(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(2*n+2) )^n. %F A317666 (3) 1 = Sum_{n>=0} ( 1/A(x) - (1-x)^(2*n+2) )^n * (1-x)^(2*n+2). %F A317666 (4) Let B(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(2*n+1) )^n , %F A317666 then B(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(2*n+2) )^n * (1-x)^(n+1). %F A317666 a(n) ~ 2^(n + log(2)/4 - 5/2) * n^n / (sqrt(1-log(2)) * exp(n) * (log(2))^(2*n+1)). - _Vaclav Kotesovec_, Aug 13 2018 %e A317666 G.f.: A(x) = 1 + 2*x + 7*x^2 + 48*x^3 + 590*x^4 + 10602*x^5 + 244457*x^6 + 6767792*x^7 + 216875258*x^8 + 7863473864*x^9 + 317632851912*x^10 + ... %e A317666 such that %e A317666 1 = 1 + (1/A(x) - (1-x)^2) + (1/A(x) - (1-x)^4)^2 + (1/A(x) - (1-x)^6)^3 + (1/A(x) - (1-x)^8)^4 + (1/A(x) - (1-x)^10)^5 + (1/A(x) - (1-x)^12)^6 + (1/A(x) - (1-x)^14)^7 + (1/A(x) - (1-x)^16)^8 + ... %e A317666 Also, %e A317666 A(x) = 1 + (1/A(x) - (1-x)^4) + (1/A(x) - (1-x)^6)^2 + (1/A(x) - (1-x)^8)^3 + (1/A(x) - (1-x)^10)^4 + (1/A(x) - (1-x)^12)^5 + (1/A(x) - (1-x)^14)^6 + (1/A(x) - (1-x)^16)^7 + (1/A(x) - (1-x)^18)^8 + ... %e A317666 RELATED SERIES. %e A317666 The related series B(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(2*n+1) )^n begins %e A317666 B(x) = 1 + x + 3*x^2 + 20*x^3 + 245*x^4 + 4394*x^5 + 101203*x^6 + 2800620*x^7 + 89739208*x^8 + 3253949840*x^9 + 131451064170*x^10 + ... %e A317666 restated, %e A317666 B(x) = 1 + (1/A(x) - (1-x)^3) + (1/A(x) - (1-x)^5)^2 + (1/A(x) - (1-x)^7)^3 + (1/A(x) - (1-x)^9)^4 + (1/A(x) - (1-x)^11)^5 + (1/A(x) - (1-x)^13)^6 + (1/A(x) - (1-x)^15)^7 + (1/A(x) - (1-x)^17)^8 + ... %e A317666 which also equals %e A317666 B(x) = (1-x) + (1/A(x) - (1-x)^4)*(1-x)^2 + (1/A(x) - (1-x)^6)^2*(1-x)^3 + (1/A(x) - (1-x)^8)^3*(1-x)^4 + (1/A(x) - (1-x)^10)^4*(1-x)^5 + (1/A(x) - (1-x)^12)^5*(1-x)^6 + (1/A(x) - (1-x)^14)^6*(1-x)^7 + (1/A(x) - (1-x)^16)^7*(1-x)^8 + (1/A(x) - (1-x)^18)^8*(1-x)^9 + ... %e A317666 Compare the above to %e A317666 1 = (1-x)^2 + (1/A(x) - (1-x)^4)*(1-x)^4 + (1/A(x) - (1-x)^6)^2*(1-x)^6 + (1/A(x) - (1-x)^8)^3*(1-x)^8 + (1/A(x) - (1-x)^10)^4*(1-x)^10 + (1/A(x) - (1-x)^12)^5*(1-x)^12 + (1/A(x) - (1-x)^14)^6*(1-x)^14 + (1/A(x) - (1-x)^16)^7*(1-x)^16 + (1/A(x) - (1-x)^18)^8*(1-x)^18 + ... %o A317666 (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ( 1/Ser(A) - (1-x)^(2*m+2) )^m ) )[#A]/2 ); A[n+1]} %o A317666 for(n=0, 25, print1(a(n), ", ")) %Y A317666 Cf. A317349, A317667, A317668, A317801. %K A317666 nonn %O A317666 0,2 %A A317666 _Paul D. Hanna_, Aug 12 2018