A317672 Regular triangle where T(n,k) is the number of clutters (connected antichains) on n + 1 vertices with k maximal blobs (2-connected components).
1, 2, 3, 44, 24, 16, 4983, 940, 300, 125, 7565342, 154770, 18000, 4320, 1296, 2414249587694, 318926314, 3927105, 363580, 72030, 16807, 56130437054842366160898, 135200580256336, 10244647168, 99187200, 8028160, 1376256, 262144
Offset: 1
Examples
Triangle begins: 1 2 3 44 24 16 4983 940 300 125 7565342 154770 18000 4320 1296
Links
- Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017.
Crossrefs
Programs
-
Mathematica
blg={0,1,2,44,4983,7565342,2414249587694,56130437054842366160898} (* A275307 *); sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]],{s,spn}],{spn,Select[sps[Range[n-1]],Length[#]==k&]}],{n,Length[blg]},{k,n-1}]