cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317676 Triangle whose n-th row lists in order all e-numbers of free pure symmetric multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 16, 7, 10, 12, 13, 21, 25, 27, 32, 36, 64, 81, 128, 256, 11, 14, 17, 18, 28, 33, 35, 41, 45, 49, 75, 93, 100, 125, 144, 145, 169, 216, 243, 279, 441, 512, 625, 729, 1024, 1296, 2048, 2187, 4096, 6561, 8192, 16384, 65536, 524288, 8388608, 9007199254740992
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

Given a positive integer n we construct a unique free pure symmetric multifunction e(n) by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)].
Every free pure symmetric multifunction (with empty expressions allowed) f with one atom and n positions has a unique e-number n such that e(n) = f, and vice versa, so this sequence is a permutation of the positive integers.

Examples

			Triangle begins:
  1
  2
  3   4
  5   6   8   9  16
  7  10  12  13  21  25  27  32  36  64  81 128 256
Corresponding triangle of free pure symmetric multifunctions (with empty expressions allowed) begins:
  o,
  o[],
  o[][], o[o],
  o[][][], o[o][], o[o[]], o[][o], o[o,o].
		

Crossrefs

Programs

  • Mathematica
    maxUsing[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h],Union[Sort/@Tuples[maxUsing/@p]]}],{p,IntegerPartitions[g]}]]];
    radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]==1];
    Clear[rad];rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    ungo[x_?AtomQ]:=1;ungo[h_[g___]]:=rad[ungo[h]]^(Times@@Prime/@ungo/@{g});
    Table[Sort[ungo/@maxUsing[n]],{n,5}]