A317676 Triangle whose n-th row lists in order all e-numbers of free pure symmetric multifunctions (with empty expressions allowed) with one atom and n positions.
1, 2, 3, 4, 5, 6, 8, 9, 16, 7, 10, 12, 13, 21, 25, 27, 32, 36, 64, 81, 128, 256, 11, 14, 17, 18, 28, 33, 35, 41, 45, 49, 75, 93, 100, 125, 144, 145, 169, 216, 243, 279, 441, 512, 625, 729, 1024, 1296, 2048, 2187, 4096, 6561, 8192, 16384, 65536, 524288, 8388608, 9007199254740992
Offset: 1
Examples
Triangle begins: 1 2 3 4 5 6 8 9 16 7 10 12 13 21 25 27 32 36 64 81 128 256 Corresponding triangle of free pure symmetric multifunctions (with empty expressions allowed) begins: o, o[], o[][], o[o], o[][][], o[o][], o[o[]], o[][o], o[o,o].
Links
- Mathematica Reference, Orderless
Crossrefs
Programs
-
Mathematica
maxUsing[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h],Union[Sort/@Tuples[maxUsing/@p]]}],{p,IntegerPartitions[g]}]]]; radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]==1]; Clear[rad];rad[n_]:=rad[n]=If[n==0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]]; ungo[x_?AtomQ]:=1;ungo[h_[g___]]:=rad[ungo[h]]^(Times@@Prime/@ungo/@{g}); Table[Sort[ungo/@maxUsing[n]],{n,5}]
Comments