This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317682 #20 Apr 07 2020 10:55:34 %S A317682 0,0,0,1,1,0,2,2,2,1,1,2,4,1,2,3,3,2,4,2,4,3,4,4,4,1,2,6,6,3,5,3,6,5, %T A317682 3,2,7,3,5,7,4,4,8,5,6,5,5,7,9,3,4,6,7,6,9,5,8,9,6,4,9,3,6,11,6,5,10, %U A317682 7,10,8,8,8,12,5,5,8,10,9,11,6,7 %N A317682 Number of partitions of n into a prime and two distinct squares. %C A317682 As in A025435, zero is a valid square here. %H A317682 Alois P. Heinz, <a href="/A317682/b317682.txt">Table of n, a(n) for n = 0..20000</a> %F A317682 a(n) = Sum_{primes p} A025435(n-p). %e A317682 a(12)=4 counts 12 = 11 + 0^2 + 1^2 = 3 + 0^2 + 3^2 = 7 + 1^2 + 2^2 = 2 + 1^2 + 3^2. %p A317682 A317682 := proc(n) %p A317682 a := 0 ; %p A317682 p := 2; %p A317682 while p < n do %p A317682 a := a+A025435(n-p); %p A317682 p := nextprime(p) ; %p A317682 end do: %p A317682 a ; %p A317682 end proc: %t A317682 A025435[n_] := Length[ PowersRepresentations[n, 2, 2]] - Boole[ IntegerQ[ Sqrt[2n]]]; %t A317682 a[n_] := Module[{s = 0, p}, For[p = 2, p <= n-1, p = NextPrime[p], s += A025435[n-p]]; s]; %t A317682 a /@ Range[0, 100] (* _Jean-François Alcover_, Apr 07 2020 *) %o A317682 (PARI) A317682(n,s=0)={forprime(p=2,n-1,s+=A025435(n-p));s} \\ _M. F. Hasler_, Aug 05 2018 %Y A317682 Cf. A025435, A317683 - A317685. %K A317682 nonn,easy %O A317682 0,7 %A A317682 _R. J. Mathar_, _Michel Marcus_, Aug 04 2018