This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317683 #15 Sep 21 2019 17:46:42 %S A317683 0,0,0,0,0,0,0,1,1,0,1,0,2,1,0,2,2,1,2,1,2,1,3,2,3,1,1,3,4,2,3,3,3,3, %T A317683 3,0,6,3,1,5,3,2,6,4,4,3,4,4,7,2,3,4,5,4,6,4,5,7,6,2,7,3,2,9,6,3,7,5, %U A317683 6,6,7,6,9,4,4,5,9,5,9,5,4 %N A317683 Number of partitions of n into a prime and two distinct positive squares. %C A317683 As in A025441, the two squares must be distinct and positive. %H A317683 Alois P. Heinz, <a href="/A317683/b317683.txt">Table of n, a(n) for n = 0..20000</a> %F A317683 a(n) = Sum_{primes p} A025441(n-p). %e A317683 a(12)=2 counts 12 = 7 +1^2 +2^2 = 2 + 1^2 +3^2. %p A317683 A317683 := proc(n) %p A317683 a := 0 ; %p A317683 p := 2; %p A317683 while p <= n do %p A317683 a := a+A025441(n-p); %p A317683 p := nextprime(p) ; %p A317683 end do: %p A317683 a ; %p A317683 end proc: %t A317683 p2sQ[n_]:=Length[Union[n]]==3&&Count[n,_?(IntegerQ[Sqrt[#]]&)]==2&&Count[ n,_?(PrimeQ[#]&)]==1; Table[Count[IntegerPartitions[n,{3}],_?p2sQ],{n,0,80}] (* _Harvey P. Dale_, Sep 21 2019 *) %Y A317683 Cf. A025441, A317682 - A317685. %K A317683 nonn,easy %O A317683 0,13 %A A317683 _R. J. Mathar_, _Michel Marcus_, Aug 04 2018