This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317705 #20 Sep 10 2018 23:44:34 %S A317705 1,4,8,16,32,49,64,128,196,256,343,361,392,512,784,1024,1372,1444, %T A317705 1568,2048,2401,2744,2809,2888,3136,4096,5488,5776,6272,6859,8192, %U A317705 9604,10976,11236,11552,12544,16384,16807,17161,17689,19208,21952,22472,23104,25088 %N A317705 Matula-Goebel numbers of series-reduced powerful rooted trees. %C A317705 A positive integer n is a Matula-Goebel number of a series-reduced powerful rooted tree iff either n = 1 or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all Matula-Goebel numbers of series-reduced powerful rooted trees, where a prime index of n is a number m such that prime(m) divides n. %H A317705 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Göbel numbers</a> %e A317705 The sequence of Matula-Goebel numbers of series-reduced powerful rooted trees together with the corresponding trees begins: %e A317705 1: o %e A317705 4: (oo) %e A317705 8: (ooo) %e A317705 16: (oooo) %e A317705 32: (ooooo) %e A317705 49: ((oo)(oo)) %e A317705 64: (oooooo) %e A317705 128: (ooooooo) %e A317705 196: (oo(oo)(oo)) %e A317705 256: (oooooooo) %e A317705 343: ((oo)(oo)(oo)) %e A317705 361: ((ooo)(ooo)) %e A317705 392: (ooo(oo)(oo)) %e A317705 512: (ooooooooo) %e A317705 784: (oooo(oo)(oo)) %t A317705 powgoQ[n_]:=Or[n==1,And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]; %t A317705 Select[Range[1000],powgoQ] (* _Gus Wiseman_, Aug 31 2018 *) %t A317705 (* Second program: *) %t A317705 Nest[Function[a, Append[a, Block[{k = a[[-1]] + 1}, While[Nand[AllTrue[#[[All, -1]], # > 1 & ], AllTrue[PrimePi[#[[All, 1]] ], MemberQ[a, #] &]] &@ FactorInteger@ k, k++]; k]]], {1}, 44] (* _Michael De Vlieger_, Aug 05 2018 *) %Y A317705 Cf. A000081, A001694, A061775, A111299, A214577, A276625, A277098, A303431. %Y A317705 Cf. A317102, A317707, A317708, A317709, A317710, A317711, A317712, A317717, A317718, A317719. %K A317705 nonn %O A317705 1,2 %A A317705 _Gus Wiseman_, Aug 04 2018 %E A317705 Rewritten by _Gus Wiseman_, Aug 31 2018