A317706 Irregular triangle of numbers k < p^2 such that k is a primitive root modulo p but not p^2, p = prime(n).
1, 8, 7, 18, 19, 31, 40, 94, 112, 118, 19, 80, 89, 150, 40, 65, 75, 131, 158, 214, 224, 249, 116, 127, 262, 299, 307, 333, 28, 42, 63, 130, 195, 263, 274, 352, 359, 411, 14, 60, 137, 221, 374, 416, 425, 467, 620, 704, 781, 827, 115, 117, 145, 229, 414, 513, 623, 726
Offset: 1
Examples
(2) 1, (3) 8, (5) 7, 18, (7) 19, 31, (11) 40, 94, 112, 118, (13) 19, 80, 89, 150, (17) 40, 65, 75, 131, 158, 214, 224, 249, (19) 116, 127, 262, 299, 307, 333, (23) 28, 42, 63, 130, 195, 263, 274, 352, 359, 411,
Programs
-
Mathematica
Table[Select[Range[p^2 - 1], MultiplicativeOrder[#, p^2] == p - 1 &], {p, Prime@ Range@ 11}] // Flatten (* Michael De Vlieger, Aug 05 2018 *)
-
PARI
forprime(p=2,100,for(i=1,p^2,if(Mod(i,p)!=0,if(znorder(Mod(i,p^2))==p-1,print1(i, ", ")))))
Comments