This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317709 #6 Aug 05 2018 08:24:50 %S A317709 1,2,3,5,6,10,11,12,13,15,18,20,22,24,26,29,30,31,33,37,40,41,44,45, %T A317709 47,48,50,52,54,55,58,60,61,62,66,71,72,74,75,78,79,80,82,88,89,90,93, %U A317709 94,96,99,101,104,108,109,110,113,116,120,122,123,124,127,130 %N A317709 Aperiodic relatively prime tree numbers. Matula-Goebel numbers of aperiodic relatively prime trees. %C A317709 A positive integer n is in the sequence iff either n = 1 or n is a prime number whose prime index already belongs to the sequence or n is not a perfect power and its prime indices are relatively prime numbers already belonging to the sequence. A prime index of n is a number m such that prime(m) divides n. %e A317709 The sequence of aperiodic relatively prime tree numbers together with their Matula-Goebel trees begins: %e A317709 1: o %e A317709 2: (o) %e A317709 3: ((o)) %e A317709 5: (((o))) %e A317709 6: (o(o)) %e A317709 10: (o((o))) %e A317709 11: ((((o)))) %e A317709 12: (oo(o)) %e A317709 13: ((o(o))) %e A317709 15: ((o)((o))) %e A317709 18: (o(o)(o)) %e A317709 20: (oo((o))) %e A317709 22: (o(((o)))) %e A317709 24: (ooo(o)) %e A317709 26: (o(o(o))) %e A317709 29: ((o((o)))) %e A317709 30: (o(o)((o))) %e A317709 31: (((((o))))) %t A317709 rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[GCD@@FactorInteger[n][[All,2]]==1,GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]]; %t A317709 Select[Range[100],rupQ] %Y A317709 Cf. A000081, A061775, A111299, A214577, A276625, A277098, A301700, A303431, A316503. %Y A317709 Cf. A317705, A317707, A317708, A317710, A317711, A317712. %K A317709 nonn %O A317709 1,2 %A A317709 _Gus Wiseman_, Aug 05 2018