This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317711 #8 May 04 2021 20:51:57 %S A317711 12,18,20,24,28,37,40,44,45,48,50,52,54,56,60,61,63,68,71,72,74,75,76, %T A317711 80,84,88,89,90,92,96,98,99,104,107,108,111,112,116,117,120,122,124, %U A317711 126,132,135,136,140,142,144,147,148,150,152,153,156,157,160,162 %N A317711 Numbers that are not uniform tree numbers. %C A317711 A positive integer n is a uniform tree number iff either n = 1 or n is a power of a squarefree number whose prime indices are also uniform tree numbers. A prime index of n is a number m such that prime(m) divides n. %e A317711 The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins: %e A317711 12: (oo(o)) %e A317711 18: (o(o)(o)) %e A317711 20: (oo((o))) %e A317711 24: (ooo(o)) %e A317711 28: (oo(oo)) %e A317711 37: ((oo(o))) %e A317711 40: (ooo((o))) %e A317711 44: (oo(((o)))) %e A317711 45: ((o)(o)((o))) %e A317711 48: (oooo(o)) %e A317711 50: (o((o))((o))) %e A317711 52: (oo(o(o))) %e A317711 54: (o(o)(o)(o)) %e A317711 56: (ooo(oo)) %e A317711 60: (oo(o)((o))) %t A317711 rupQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]; %t A317711 Select[Range[100],!rupQ[#]&] %Y A317711 Cf. A061775, A072774, A111299, A214577, A276625, A277098, A303431, A317590. %Y A317711 Cf. A317705, A317707, A317708, A317709, A317710 (complement), A317712, A317717, A317718. %K A317711 nonn %O A317711 1,1 %A A317711 _Gus Wiseman_, Aug 05 2018