cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317714 Chessboard rectangles sequence (see Comments), also A037270 interleaved with A163102.

This page as a plain text file.
%I A317714 #44 Jul 04 2025 03:08:48
%S A317714 0,0,1,2,10,18,45,72,136,200,325,450,666,882,1225,1568,2080,2592,3321,
%T A317714 4050,5050,6050,7381,8712,10440,12168,14365,16562,19306,22050,25425,
%U A317714 28800,32896,36992,41905,46818,52650,58482,65341,72200,80200,88200,97461,106722,117370
%N A317714 Chessboard rectangles sequence (see Comments), also A037270 interleaved with A163102.
%C A317714 Take a chessboard of n X n unit squares in which the a1 square is black. a(n) is the number of composite rectangles of p X q unit squares whose vertices are covered by black unit squares (1 < p <= n, 1 < q <= n).
%H A317714 Jinyuan Wang, <a href="/A317714/b317714.txt">Table of n, a(n) for n = 1..10000</a>
%H A317714 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-6,0,6,-2,-2,1).
%F A317714 a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8), with a(1)=0, a(2)=0, a(3)=1, a(4)=2, a(5)=10, a(6)=18, a(7)=45, a(8)=72.
%F A317714 G.f.: -(x^3*(1+ 4*x^2 + x^4))/((-1+x)^5*(1+x)^3).
%F A317714 a(n) = (5 - 5*(-1)^n - 12*n + 12*(-1)^n*n + 14*n^2 - 6*(-1)^n*n^2 - 8*n^3 + 2*n^4)/64.
%F A317714 a(n) = Sum_{i=1..n-1} floor(i/2)^3. - _Ridouane Oudra_, Jul 24 2019
%F A317714 E.g.f.: (1/64)*exp(-x)*(-5-6*x-6*x^2+exp(2*x)*(5-4*x+4*x^2+4*x^3+2*x^4)). - _Stefano Spezia_, Aug 14 2019
%F A317714 a(2*n) = A163102(n-1) and a(2*n+1) = A037270(n). - _Ridouane Oudra_, Mar 24 2024
%F A317714 Sum_{n>=3} 1/a(n) = Pi^2 - Pi*coth(Pi) - 5. - _Amiram Eldar_, Jul 04 2025
%e A317714 In a 4 X 4 chessboard there are two such rectangles (for both p = q = 3) and the coordinates of their lower left vertices are a1 and b2. Therefore, a(4) = 2.
%t A317714 CoefficientList[Series[-((x^2 (1+4 x^2+x^4))/((-1+x)^5 (1+x)^3)),{x,0,44}],x]
%t A317714 LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 1, 2, 10, 18, 45, 72}, 80] (* _Vincenzo Librandi_, Aug 06 2018 *)
%o A317714 (Magma) [(5-5*(-1)^n-12*n+12*(-1)^n*n+14*n^2-6*(-1)^n*n^2-8*n^3+2*n^4)/64: n in [1..50]]; // _Vincenzo Librandi_, Aug 05 2018
%o A317714 (Python)
%o A317714 n, a = 0, 0
%o A317714 while n < 10:
%o A317714     print(n,a)
%o A317714 n, a = n+1, a+((n+1)//2)**3 # _A.H.M. Smeets_, Aug 09 2019
%o A317714 (PARI) a(n) = sum(i = 1, n-1, floor(i/2)^3); \\ _Jinyuan Wang_, Aug 12 2019
%Y A317714 Cf. A005993, A037270, A163102.
%K A317714 easy,nonn
%O A317714 1,4
%A A317714 _Ivan N. Ianakiev_, Aug 05 2018