A317715 Number of ways to split an integer partition of n into consecutive subsequences with equal sums.
1, 1, 3, 4, 9, 8, 21, 16, 39, 38, 64, 57, 146, 102, 186, 211, 352, 298, 593, 491, 906, 880, 1273, 1256, 2444, 1998, 3038, 3277, 4861, 4566, 7710, 6843, 10841, 10742, 14966, 15071, 24499, 21638, 31334, 32706, 47157, 44584, 67464, 63262, 91351, 94247, 125248
Offset: 0
Keywords
Examples
The a(4) = 9 constant-sum split partitions: (4), (31), (22), (2)(2), (211), (2)(11), (1111), (11)(11), (1)(1)(1)(1). The a(6) = 21 constant-sum split partitions: (6), (51), (42), (411), (33), (3)(3), (321), (3)(21), (3111), (3)(111), (222), (2)(2)(2), (2211), (2)(2)(11), (21111), (21)(111), (2)(11)(11), (111111), (111)(111), (11)(11)(11), (1)(1)(1)(1)(1)(1).
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 0..500
- Gus Wiseman, The a(8) = 39 constant-sum split partitions.
- Gus Wiseman, The a(10) = 64 constant-sum split partitions.
- Gus Wiseman, The a(12) = 146 constant-sum split partitions.
Crossrefs
Programs
-
Mathematica
comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}]; Table[Sum[Length[Select[comps[y],SameQ@@Total/@#&]],{y,IntegerPartitions[n]}],{n,10}]
Extensions
a(16)-a(46) from Hiroaki Yamanouchi, Oct 02 2018