This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317718 #11 Aug 05 2018 20:42:35 %S A317718 1,1,2,4,7,13,27,55,125,278,650,1510,3624,8655,21017,51212,125857, %T A317718 310581,770767,1920226 %N A317718 Number of uniform relatively prime rooted trees with n nodes. %C A317718 An unlabeled rooted tree is uniform and relatively prime iff either it is a single node or a single node with a single uniform relatively prime branch, or the branches of the root have empty intersection (relatively prime) and equal multiplicities (uniform) and are themselves uniform relatively prime trees. %H A317718 A. David Christopher and M. Davamani Christober, <a href="http://emis.impa.br/EMIS/journals/GMN/yahoo_site_admin/assets/docs/1_GMN-2492-V13N2.77213831.pdf">Relatively Prime Uniform Partitions</a>, Gen. Math. Notes, Vol. 13, No. 2, December, 2012, pp. 1-12. %e A317718 The a(6) = 13 uniform relatively prime rooted trees: %e A317718 (((((o))))) %e A317718 ((((oo)))) %e A317718 (((o(o)))) %e A317718 (((ooo))) %e A317718 ((o((o)))) %e A317718 ((o(oo))) %e A317718 ((oooo)) %e A317718 (o(((o)))) %e A317718 (o((oo))) %e A317718 (o(o(o))) %e A317718 (o(ooo)) %e A317718 ((o)((o))) %e A317718 (ooooo) %t A317718 purt[n_]:=purt[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Or[Length[#]==1,And[SameQ@@Length/@Split[#],Intersection@@#=={}]]&],{ptn,IntegerPartitions[n-1]}]]; %t A317718 Table[Length[purt[n]],{n,20}] %Y A317718 Cf. A000081, A001190, A004111, A072774, A301700, A317588. %Y A317718 Cf. A317705, A317707, A317708, A317709, A317710, A317711, A317712, A317717. %K A317718 nonn,more %O A317718 1,3 %A A317718 _Gus Wiseman_, Aug 05 2018