This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317720 #4 Aug 05 2018 20:42:47 %S A317720 9,12,18,20,21,23,24,25,27,28,37,39,40,44,45,46,48,49,50,52,54,56,57, %T A317720 60,61,63,65,68,69,71,72,73,74,75,76,80,81,83,84,87,88,89,90,91,92,96, %U A317720 97,98,99,103,104,107,108,111,112,115,116,117,120,121,122,124 %N A317720 Numbers that are not uniform relatively prime tree numbers. %C A317720 A positive integer n is a uniform relatively prime tree number iff either n = 1 or n is a prime number whose prime index is a uniform relatively prime tree number, or n is a power of a squarefree number whose prime indices are relatively prime and are themselves uniform relatively prime tree numbers. A prime index of n is a number m such that prime(m) divides n. %e A317720 The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins: %e A317720 9: ((o)(o)) %e A317720 12: (oo(o)) %e A317720 18: (o(o)(o)) %e A317720 20: (oo((o))) %e A317720 21: ((o)(oo)) %e A317720 23: (((o)(o))) %e A317720 24: (ooo(o)) %e A317720 25: (((o))((o))) %e A317720 27: ((o)(o)(o)) %e A317720 28: (oo(oo)) %e A317720 37: ((oo(o))) %e A317720 39: ((o)(o(o))) %e A317720 40: (ooo((o))) %e A317720 44: (oo(((o)))) %e A317720 45: ((o)(o)((o))) %t A317720 rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]]; %t A317720 Select[Range[200],!rupQ[#]&] %Y A317720 Cf. A061775, A072774, A111299, A214577, A276625, A277098, A303431, A317590. %Y A317720 Cf. A317705, A317707, A317708, A317709, A317710, A317712, A317717, A317718. %K A317720 nonn %O A317720 1,1 %A A317720 _Gus Wiseman_, Aug 05 2018