This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317744 #38 Apr 10 2024 03:31:43 %S A317744 11,311,5101,131101,2511001,37100101,51110011,59111011,731001001, %T A317744 931011101,971100001,1191110111,12910000001,13110000011,13710001001, %U A317744 15310011001,17310101101,19311000001,21311010101,21511010111,24711110111,25511111111,319100111111 %N A317744 Prime numbers which result as a concatenation of a decimal number and its binary representation. %C A317744 The decimal number plus its Hamming weight A000120 must not be divisible by 3. - _M. F. Hasler_, Apr 05 2024 %H A317744 Michael S. Branicky, <a href="/A317744/b317744.txt">Table of n, a(n) for n = 1..10000</a> %e A317744 11 is in the sequence because the binary representation of 1 is 1 and the concatenation of 1 and 1 gives 11, which is prime. %e A317744 931011101 is in the sequence because it is the concatenation of 93 and 1011101 (the binary representation of 93) and is prime. %t A317744 Select[Table[FromDigits[Join[IntegerDigits[n],IntegerDigits[n,2]]],{n,400}],PrimeQ] (* _Harvey P. Dale_, Jul 15 2020 *) %o A317744 (Python) %o A317744 from sympy import isprime %o A317744 def nbinn(n): return int(str(n)+bin(n)[2:]) %o A317744 def ok(n): return isprime(nbinn(n)) %o A317744 def aprefixupto(p): return [nbinn(k) for k in range(1, p+1, 2) if ok(k)] %o A317744 print(aprefixupto(319)) # _Michael S. Branicky_, Dec 27 2020 %o A317744 (PARI) nb(n)=fromdigits(concat(n,binary(n))) %o A317744 A317744_upto(N=666)=[p|n<-[1..N], is/*pseudo*/prime(p=nb(n))] \\ _M. F. Hasler_, Apr 05 2024 %Y A317744 Cf. A000040, A030458, A052087, A052088, A052089, A127421, A236551, A287300, A287310. %K A317744 nonn,base,less %O A317744 1,1 %A A317744 _Philip Mizzi_, Aug 05 2018