A317746 Irregular triangle read by rows in which row n lists the divisors k of n such that k^n + n^k == 0 (mod k + n).
1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 3, 6, 1, 7, 1, 2, 8, 1, 3, 9, 1, 10, 1, 11, 1, 4, 6, 12, 1, 13, 1, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 6, 9, 18, 1, 19, 1, 5, 20, 1, 3, 7, 21, 1, 22, 1, 23, 1, 3, 8, 12, 24, 1, 5, 25, 1, 13, 26, 1, 3, 9, 27, 1, 4, 28, 1, 29, 1, 6, 10, 15, 30
Offset: 1
Examples
Triangle begins: 1; 1, 2; 1, 3; 1, 4; 1, 5; 1, 3, 6; 1, 7; 1, 2, 8; 1, 3, 9; 1, 10; 1, 11; 1, 4, 6, 12;
Programs
-
Magma
[[k: k in [ 1..n] | Denominator(n/k) eq 1 and Denominator((k^n+n^k)/(k+n)) eq 1]: n in [1..30]]
-
Mathematica
a[n_] := Select[ Divisors@ n, Mod[PowerMod[#, n, # + n] + PowerMod[n, #, # + n], # + n] == 0 &]; Array[a, 30] // Flatten (* Robert G. Wilson v, Aug 06 2018 *)
Comments