This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317749 #40 Oct 12 2018 20:32:39 %S A317749 1,2,4,5,5,4,7,4,7,5,6,6,10,6,8,8,9,5,8,6,10,8,8,6,12,9,7,6,10,6,12,8, %T A317749 10,8,8,8,13,4,7,6,12,8,12,8,10,10,8,6,14,7,8,8,10,6,12,10,12,10,8,6, %U A317749 16,7,6,10,11,6,12,8,10,8,12,8,16,7,6,10,10,8,12,8,14,9,7,4,15,8,8,8,12,8,16,9,9,7,6,8,16,7,8,10 %N A317749 a(n+1) = d(n) + d(a(n)) with a(1)=1, where d(n) is the number of the divisors of n. %C A317749 If a(n+1)=4, then n and a(n) are prime numbers. %C A317749 a(n+1) < 2*sqrt(a(n)) + 2*sqrt(n). %H A317749 Robert G. Wilson v, <a href="/A317749/b317749.txt">Table of n, a(n) for n = 1..10000</a> %F A317749 a(n+1) = d(n) + d(a(n)) where d(n) is the number of divisors of n (A000005). %e A317749 d(1) = 1, d(2) = 2, d(3) = 2; a(1) = 1, a(2) = 2, a(3) = 4. %e A317749 a(38)=4, so 37 and a(37)=13 are prime numbers. %t A317749 a[n_] := DivisorSigma[0, n - 1] + DivisorSigma[0, a[n - 1]]; a[1] = 1; Array[a, 80] (* _Robert G. Wilson v_, Aug 06 2018 *) %o A317749 (PARI) a(n) = if (n==1, 1, numdiv(n-1) + numdiv(a(n-1))); \\ _Michel Marcus_, Aug 25 2018 %Y A317749 Cf. A000005, A128863, A049820, A189827. %K A317749 nonn %O A317749 1,2 %A A317749 _Jinyuan Wang_, Aug 06 2018 %E A317749 Name edited by and more terms from _Robert G. Wilson v_, Aug 06 2018