cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317756 Number of distinct primes obtained by cyclically shifting the decimal digits of the n-th prime.

This page as a plain text file.
%I A317756 #21 Jan 18 2025 19:04:09
%S A317756 1,1,1,1,1,2,2,1,1,1,2,2,1,1,1,1,1,1,1,2,2,2,1,1,2,2,2,2,1,3,2,3,1,1,
%T A317756 2,1,2,2,1,2,1,2,2,1,3,3,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,2,3,2,2,2,3,
%U A317756 1,1,1,2,2,3,2,1,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,1,2
%N A317756 Number of distinct primes obtained by cyclically shifting the decimal digits of the n-th prime.
%C A317756 First occurrence of k, k=1,2,3,...: 2, 13, 113, 1193, 11939, 193939, 17773937, 119139133, ..., . A247153.
%C A317756 a(n) is equal to the row index of prime(n) in A317716.
%C A317756 Every positive integer occurs in this sequence if and only if A247153(i) != 0 for every i >= 1.
%H A317756 Robert Israel, <a href="/A317756/b317756.txt">Table of n, a(n) for n = 1..10000</a>
%F A317756 a(n) = A262988(A000040(n)).
%t A317756 f[n_] := Block[{len = IntegerLength@n, s = {n}}, Do[AppendTo[s, FromDigits@RotateRight@IntegerDigits@s[[k - 1]]], {k, 2, len}]; DeleteDuplicates@Select[s, PrimeQ]] (* after Michael De Vlieger in A262988 *); Array[Length@f@Prime@# &, 105] (* _Robert G. Wilson v_, Aug 06 2018 *)
%t A317756 Table[Count[Union[FromDigits/@Table[RotateRight[IntegerDigits[p],n],{n,IntegerLength[p]}]],_?PrimeQ],{p,Prime[Range[120]]}] (* _Harvey P. Dale_, Jan 18 2025 *)
%o A317756 (PARI) eva(n) = subst(Pol(n), x, 10)
%o A317756 rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
%o A317756 count_primes(n) = my(d=digits(n), i=0); while(1, if(ispseudoprime(eva(d)), i++); d=rot(d); if(d==digits(n), return(i)))
%o A317756 a(n) = my(p=prime(n)); count_primes(p) \\ _Felix Fröhlich_, Aug 06 2018
%Y A317756 Cf. A000040, A262988, A247153, A317716.
%K A317756 base,easy,nonn
%O A317756 1,6
%A A317756 _Felix Fröhlich_ and _Robert G. Wilson v_, Aug 06 2018